NLED AUG test case description (#31213@0.84s )

Selection of publications related to the NLED-AUG case

  • L. Horvath et al, Nucl. Fusion 56, 112003 (2016) link

  • Ph. Lauber er al, 27th IAEA FEC (2018) proceedings invited talk

  • A. Di Siena, et al, Nucl. Fusion 58, 106014 (2018) link

  • I. Novikau, et al, Comput. Phys. Commun. 262, 107032 (2021), link

  • F. Vannini, et al, Phys. Plasmas 27, 042501 (2020) arXiv - link

  • F. Vannini, et al,  Physics of Plasmas 28, 072504 (2021)- link

  • I. Novikau, et al, Phys. Plasmas 27, 042512 (2020) link

  • M. V. Falessi, et al,  J. Plasma Phys. (2020) link

  • Ph. Lauber er al, 28th IAEA FEC (2020) link

  • G. Vlad et al 2021 Nucl. Fusion 61 116026 link

  • B. Rettino, et al, Nuclear Fusion 62, 076027 (2022), link

  • F. Vannini, et al, J. Phys.: Conf. Series 2397, 012003 (2022), link

  • F. Vannini, et al, Nuclear Fusion 62, 126042 (2022), link

  • B. Rettino, et al, Nuclear Fusion 63, 126051 (2023), link



  • Detailed description:

    slides NLED meeting 14.4.2015: pdf

    all profiles given as polynomials of s (sqrt(norm_pol_flux)), see .pdf file

    plasma boundary: circluar (R_geo=1.62m, a=0.482m) ASCII coordinates

    vmec input data:

    helena input/output:

    For constructing the circular equilibrium with another equilibrium code, here the profiles and plasma boundary (R0=1.62, B0=2.25T):

    profile of ff' as function of s=sqrt(norm. pol. flux), equidistant grid: ff'

    profile of ' as function of s=sqrt(norm. pol. flux), equidistant grid: p'

    For the experimental case (shaped equilibrium), a geqdsk-file is available:

    geqdsk file: G-file; ATTENTION: this geqdsk file is the original AUG equilibrium and not the simplified (q,plasma boundary) version

    updated geqdsk file: updated G-file; now the boundary of the last closed flux surface is added, otherwise the file should be identical to the one above (updated 1.6.2016 by pwl) version

    The q profiles of the two cases are very similar in the core, towards the edge, differences arise. The results below refer to the circular case.

    EP specifications:


    results

    results: (circular case)

    radial coordinate: s=sqrt(norm_pol_flux)

    frequencies: normalised to on-axis Alfven frequency: f_A0=ω_A0/(2 π)= v_A0/R0/(2 π) with v_A0=B0/sqrt(μ mD nD,0)

    eigenfunction: electrostatic potential, if not stated otherwise

    1. Step:

      flat profiles for T,n: Ti=Te=1.6keV, ne=ni=1.265 *10^19 m^-3; f_A0=909kHz
    2. Step:

      density profile, as given in the slides, flat Ti=Te=1.6keV; note that n_0 (and also v_A0) changes: 1.265 *10^19 m^-3-> 1.716 *10^19 m^-3; f_A0=780kHz
    3. Step:

      density profile, as given in the slides, Ti=Te profile given in the slides
    4. Step:

      density profile, as given in the slides, Ti, Te profiles given in the slides