

'sea' of unstable small amplitude modes for low energy [80/60keV] on-axis NBI drive in ramp-up

[B. Heidbrink et al, NF 53, 2012]

conclusions: overlap of many small amplitude modes dominates EP transport -threshold to strongly non-linear behaviour? ITER?

ASDEX Upgrade: early off-axis NBI drive [93keV]: bursting EGAMs, RSAEs and TAE/EPMs

Time (seconds)

beam injection geometry

normalised magnetic fluctuation spectra

time history of 4 discharges with different NBI injection angles

n=I TAE bursts seem to have some similarity to 'fast sweeping' and 'ALE' events at JT-60U

additional new physics: nI EGAM interaction, drive at $v_A/3$

phase space coupling: n=I TAE bursts seem to trigger EGAMs

from reflectometry (hopping frequency) and soft-X-ray measurements: EGAMs,TAEs RSAEs and intermediate frequency modes are visible in the same channels \Rightarrow similar radial location at $\rho_{pol} \sim 0.2-0.5$,

NBI distribution function

experimental EP transport

total equilibrium pressure

 $R_geo = 1.620m$ $B_geo = 2.248T$ $R_mag = 1.666m$ $B_mag = 2.208$ a [m] = 0.482m $\epsilon=a/R_geo=0.297$ $\beta_{tot,axis}=1.3\%$

s values for background T_{ie}; on axi

I.step: take mid-radius values for background T_{i,e}; on axis flat den
2.step: use density profile
3.step: use profile for Ti=Te
4.step: use different profiles for Ti, Te unu unu unu

electron density:

deuterium temperature:

x: sqrt (normalised poloidal flux)

electron temperature [eV]:Te(x)=a+b $x^{2}+c x^{3}+d x^{4}+e x^{5}$

a = 707.419; b = 11909.8; c = -34439.8; d = 33868.6; e = -11986.

²nd NLED meeting, 14.4.2015

TRANSP NBI distribution function

simplified NBI distribution function

ideal n=1 SAW spectrum

- •AUG (and DIII-D?) seem to be close to regimes with strongly nonlinear EP dynamics (like spherical Tokamaks or JT-60U)
- •TAE/EPM bursts instead of several marginally stable modes where is the transition?
- •experimentally: reduced beam voltage and NBI power scans to be performed in 2015
- are proposed parameters possible for NLED codes? simplifications needed? different representation?
- •EP parametric distribution function to be determined (next weeks) •scale to burning plasmas: change ρ^* - mode numbers