

Outline

U																
•	Basic Tokamak Physics															
•	Experimental discovery of XPR															
•	Reduced model															
•	XPR control															
	Advantages of XPR regime: Power exha	ە •	。 。	8,	° do	° ta	° •	m	٥r	。 。 10						
		0 0	。 。			0	0 0	0 0		0						
•	Application: Compact radiative divertor	0														
•	Summary															

Basis of a Tokamak

X-point configuration (single-null)

- Confined region
- Scrape-off layer (SOL)
- Separatrix
- X-point
- Private flux region (PFR)

O. Pan 2020 Doctoral thesis, Technical University of Munich

XPR : Experimental discovery

High ٠ Stro ٠ Mot ۲ Imp ۰ Col 024001 06Buc \$40007 3851 14.01.22 11:50 3.371 M. Bernert et al 2023 Nuclear Materials and Energy Volume 34, 101376

How does impurity enter the confined region?

- Cross field transport around the x-point
- Accumulation of impurities
- Upstream transport towards HFS
 Instability (Multifaceted Asymmetric Radiation From the Edge)

 \vec{v}_D

0. Pan et al 2023 Nucl. Fusion 63, 016001

XPR Reduced model

4 Processes for power sink: Electron-impact ionization of neutral D + Charge exchange processes (cm> ~20 eV Impurity radiat Recombination ~1 $\Delta h_{\rm X}$ flux tube analysis Δr_{u} S midp $\Delta r_{\rm X}$ XPR separatrix Vx $\Delta r_{\rm u}$ **B** ⊙ separatrix L_c ₹ q, $= 2\pi R_0 \Delta h_X \Delta r_X$ V_X $= 2\pi R_0 \Delta h_X \Delta r_u f_{exp}$ SOL $= 2\pi R_0 \Delta r_u \sin \alpha_u$ AA $V_X (m^3)$ $n_0 ~({
m m}^{-3})$ $n_u \ ({\rm m}^{-3})$ $T_{e,u}$ (eV) $T_{i,u}$ (eV) L_c (m) CN 10^{17} 6×10^{19} 200.013100 1200.01

Access condition & Stability criterium

From the flux tube analysis:

Particle balance

$$M_{\rm A} = \frac{R_0^3}{a^2} \sqrt{\frac{m_{\rm i}}{T_{\rm u}}} q_{\rm s}^3 f_{\rm exp}^2 c_{\rm imp}$$

upstream density, impurity content
upstream temperature

XPR Control

- Typically extend to 5 cm above the X-point, up to 15 cm
- Extension and position depend on <u>impurity puffing rate</u> and <u>heating power</u>

8

Power exhaust & Detachment

A potential solution to the power exhaust problem in ٠ Radiator position above X-point AUG #36655 Set value 10 Actual value power plants (DEMO) [cm] Lead ation • Separatrix N seeding 41 I_p [100 kA] P_{NBI} [MW] [1e22 el/s] Ter PECRH [MW] Closed magnetic div $n_{e, \, core}$ surfaces ne, edge Open magnetic D_2 14 P_{tot} surfaces 12 NBI 10 **ECRH** [MM] Scrape-off layer $T_{\rm div}$ X-point XPR pos. Private -2 4 6 Time (s) plasma Strike points Private -M. Bernert et al 2021 Nucl. Fusion 61, 024001 plasma Divertor plates 10 Divertor p Ham C., et al. Nature Reviewed Physics, Besie 159-11617, 520(20:159-11467, 20020) at al 2022 Nucl. Fusion 62 066027 10

Compact radiative divertor

- Benefits: Simpler divertor structure, lower material loads, larger plasma volume
- Concerns: Radiation power, reattachment, different transport in DEMO (modelling)

https://artinwords.de/thomas-struth/thomas-struth-tokamakasdex-upgrade-interior-2-2009/

Compact radiative divertor

https://www.youtube.com/watch?v=o9G6cAR5rCs

- Impurity gas puffing leads to XPR.
- Position of XPR can be controlled by heating power and puffing rate.
- Unstable XPR moves upstream towards HFS and turns into a MARFE.
- XPR is a potential solution to power exhaust problem in a tokamak.
- XPR leads to full detachment and 100% power dissipation.
- Compact radiative divertor is an attractive divertor configuration.
- More detailed study on XPR and its interaction with other plasma edge phenomena requires dedicated modelling and more experiments.

References

- Ham C., et al. Nature Reviews Physics, 2(3):159-167, 2020
- O. Pan 2020 Doctoral thesis, Technical University of Munich
- M. Bernert et al 2021 Nucl. Fusion 61, 024001
- M. Bernert et al 2023 Nuclear Materials and Energy Volume 34, 101376
- U. Stroth et al 2022 Nucl. Fusion 62, 076008
- T. Lunt et al 2023 Phys. Rev. Lett. 130, 145102
- 0. Pan et al 2023 Nucl. Fusion 63, 016001
- M. Cavedon et al 2022 Nucl. Fusion 62 066027
- https://hesperia.gsfc.nasa.gov/summerschool/lectures/emslie/plasma_physics_handout.

Magnetic flux surfaces

In an equilibrium ($ec{j} imesec{B}=
abla p$)

- Magnetic field lines stay parallel to the magnetic flux surfaces.
- Plasma pressure stays constant on each magnetic flux surface.

• No pressure gradient along the field lines

XPR : The XPR parameter

- High-T solution vanishes with increased upstream neutral density (n_0) \implies XPR ($C_N > 0.1\%$)
- Increased impurity content $(C_N) \implies$ Also helps to form XPR

XPR : Stability

• Particle balance \implies MARFE occurrence parameter: $M_{\rm A} = \frac{R_0^3}{a^2} \sqrt{\frac{m_{\rm i}}{T_{\rm u}}} n_{\rm u}^3 q_{\rm s}^3 f_{\rm exp}^2 c_{\rm imp}$

From figure 7 of [Stroth_NF_2022]

ELM suppression (?)

- Edge localized mode: Pedestal relaxation in H-mode
- At a position of 7 cm, an <u>ELM suppressed regime</u> was found experimentally with power dissipation $\approx 100\%$!

(Though not exactly in H-mode: weak pedestal)

SOLPS – ITER simulation

- Low $\Phi_N = 9.8 \times E20 [e/s]$
- Detached
- Radiative/ ionizing region at SOL

- High $\Phi_N = 2.1 \text{ x } \text{E21} [\text{ e/s}]$
- Colder divertor region
- Radiative region at up stream SOL

and above x-point

SOLPS – ITER simulation

- Confirm the access condition from the reduced model
- Sketch of XPR
- Tests with absorbing/ reflecting baffle

Neutrals are important for initiating XPR but not

necessarily for maintaining it

