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Overview
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Rocket Principle
Actio et Reactio

https://revisionworld.com/a2-level-level-revision/physics/force-motion/momentum-second-law/momentum-second-law-0
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Rocket Principle
Newton’s Law and the Rocket Equation

𝐹 = 𝑚 ⋅ 𝑣!" Thrust developed by the exhaust (2nd law) ,		𝑚 = #$
#%

𝑣!" = 𝑢!" +
𝑝!𝐴! − 𝑝&𝐴!

𝑚
Effective exhaust velocity

𝑑𝑣
𝑑𝑡 =

𝐹
𝑀

Acceleration of the rocket (2nd law)

𝑣'()*!% = 𝑣!" ⋅ log!
𝑀+

𝑀
Tsiolkovsky‘s equation (ideal rocket equation)

𝑑𝑣
𝑑𝑡 = −𝑣!" 3

𝑑𝑀
𝑑𝑡 3

1
𝑀

Substituting for 𝐹, from the first equation
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Rocket Principle
Newton’s Law and the Rocket Equation

Turner (2009)

Vehicle velocity strongly depends on the exhaust velocity!



𝑃 = 𝐹 ⋅ 𝑣!" Power of the rocket engine

𝐹 = 𝑚 ⋅ 𝑣!" Thrust of the rocket engine

𝐼,- =
𝑣!"
𝑔 Specific impulse of the rocket engine, 𝑔 ≈ 9.81 .

/!
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Power, Thrust and Specific Impulse
Engine Parameters



𝐼 = 𝐹 𝑑𝑡 = 𝑚 ⋅ 𝑣!"0&1,% 𝑑𝑡 Impulse given to the rocket, 𝑚 = #$
#%

𝐼,- =
𝐼

𝑚 3 𝑔 𝑑𝑡
=
𝑣!"0&1,%

𝑔 Impulse given to the rocket by weight of propellant
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Power, Thrust and Specific Impulse
Specific Impulse 𝐼<=

𝐼!" is an efficiency quantity!
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Limits of chemical rockets
Maximum exhaust velocity of chemical rockets

”Lets just build rockets with higher exhaust velocities!”

For	a	chemical	rocket	the	maximum	exhaust	velocity	is	𝑣#$ = 4.5 ⁄%& '	!
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Electric Propulsion
Plasma Thrusters as a Subset of Electric Propulsion Systems

“Using electricity to heat the 
propellant”

“Using electric and magnetic 
fields to accelerate particles”

Electric Propulsion

Electric Thrusters Electrostatic/ -magnetic Thrusters



Molecules after chemical reaction
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General Physics of Plasma Propulsion
What is different?

Propulsion is no longer based on thermodynamic effects.

Plasma particles in 
e.g. electrostatic field
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General Physics of Plasma Propulsion
What is different?

Turner (2009)

𝑣 = 𝑣!" ⋅ log 1 +
2𝜂𝜉𝑡

2𝜂𝜉𝑡 𝑀#𝑀$
+ 𝑣!"%
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General Physics of Plasma Propulsion
What is different?

Turner (2009)

A too high exhaust velocity reduces the vehicle velocity!
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General Physics of Plasma Propulsion
Ion Thrusters

Turner (2009)
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General Physics of Plasma Propulsion
Ion Thrusters – The Space Charge Limit

The	current	density	of	an	ion	thruster	is	limited.

Ions partially shield the first grid

𝑗 =
4𝜖!
9

2𝑞
𝑀
⋅
𝐸!"

𝑑

#/%

𝑑%𝑉
𝑑𝑥%

= −
𝜌&
𝜖!
= −

𝑗
𝜖!𝑣&

𝑣& =
2𝑞(𝑉# − 𝑉)

𝑀&

𝑉# 𝑉

𝐸 =
𝑑𝑉
𝑑𝑥 = 2

𝑗
𝜖!

#/% 𝑀
2𝑞

#/'
⋅ 𝑉# − 𝑉 #/'

𝑉 = 𝑉# −
3
2

𝑗
𝜖!

#
% 𝑀
2𝑞

#
'
𝑑

'/"

𝐸! =
𝑉# − 𝑉
𝑑

Turner (2009)
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General Physics of Plasma Propulsion
Ion Thrusters – The Thrust Dilemma

Ion	thrusters	are	high	exhaust	velocity	and	low	thrust	devices.

𝑭 = 𝑚 ⋅ 𝑣!" = 𝑗 ⋅
𝑀2

𝑞 ⋅ 𝐴 ⋅
2𝑞(𝑉3−𝑉)

𝑀2
=
𝟖
𝟗 ⋅ 𝝐𝟎𝑬𝟎

𝟐 ⋅ 𝑨

𝑚 𝑣()

𝑣2 =
2𝑞(𝑉3 − 𝑉)

𝑀2
𝐸+ =

𝑉3 − 𝑉
𝑑
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General Physics of Plasma Propulsion
Plasma Thrusters – Acceleration Mechanism

Turner (2009)
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Different Types of Plasma Thrusters
Ion Thrusters

Turner (2009) https://www.jpl.nasa.gov/images/pia04247-deep-space-1s-ion-engine

NSTAR ion thruster, as used on Deep Space 1
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Different Types of Plasma Thrusters
Pulsed Plasma Thruster

Lau et al. (2013) https://de.wikipedia.org/wiki/Zond

Pulsed Plasma Thruster, as used on ZOND 2 
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Different Types of Plasma Thrusters
Hall Effect Thrusters (HET)

Stroth (2011)

Hall Effect Thruster, as used on SMART-1

= −𝜎* ⋅
𝐸×𝐵
𝐵

https://www.esa.int/ESA_Multimedia/Images/2003/04/Close-up_view_of_SMART-
1_s_stationary_plasma_thruster

Hall current
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Different Types of Plasma Thrusters
Magnetoplasmadynamic Thrusters

Gilland et al. (2003) https://en.wikipedia.org/wiki/Magnetoplasmadynamic_thruster

Currently being studied by e.g. NASA Jet Propulsion Laboratory
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Different Types of Plasma Thrusters
VASIMR

Chang-Diaz et al. (2022) Chang-Diaz et al. (2022)

VASIMR, Ad Astra Rocket Company (in progress)
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Conclusion
Sky is not the Limit

Applications
• interplanetary and deep space mission

• adjusting of satellite trajectories

Promising benefits 
• highly efficient

• heavier payloads

• ideal for long term missions

• addition/ alternative to chemical rockets

Challenges
• generating more thrust

• power requirements

• erosion of components
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