

ELECTRON POSITRON PLASMA

ALEXANDER MORLANG

PROSEMINAR PLASMA PHYSICS

(https://owlcation.com/stem/Neutron-Stars-Pulsars-and-Magnetars-or-the-Odd-Physics-of-Extreme-Stars; https://webbtelescope.org/webb-science/early-universe)

CONTENTS

- What is an EPP?
- Properties
 - Mass difference
 - System size, Debye length, plasma skin depth
 - Collisional effects
 - Acoustic waves
 - Drift waves

- Confinement
 - Paul traps
 - Dipole confinement

- Current research
 - APEX
- Conclusion

WHAT IS AN EPP?

- Particle and antiparticle plasma
- Same properties besides charge and magnetic moment

Accumulation method for antiparticles

Unique physical properties

PROPERTIES

MASS DIFFERENCE

- Normal plasmas:
 - Mass difference causes instabilities
 - Fast and slow phenomena
 - Different energy exchange

(https://www.bnl.gov/newsroom/news.php?a=217396)

No mass difference in EPPs

SYSTEM SIZE, DEBYE LENGTH, PLASMA SKIN DEPTH

- Plasma skin depth: depth that EM radiation can penetrate
- Plasma frequency: frequency of electron oscillation

In EPPs
$$\sqrt{2}\omega_{pe}$$
 $l_S = \frac{c}{\omega_{pe}}$

• Dispersion relation:
$$\omega^2 = 2\omega_{pe}^2 + 3v_{Te}^2k^2$$

(https://en.wikipedia.org/wiki/Skin_effect)

SYSTEM SIZE, DEBYE LENGTH, PLASMA SKIN DEPTH

Debye length: distance at which electrostatic potential can

be neglected

-

In EPPs positrons participate in screening

$$rac{e\phi}{k_BT}$$
 not negligibly small $\lambda_D = \sqrt{rac{\epsilon_0 \kappa T_e}{2n_e e^2}}$

(https://marriott.tistory.com/58)

SYSTEM SIZE, DEBYE LENGTH, PLASMA SKIN DEPTH

	_	$n_{e} \ ({\rm m}^{-3})$	ls (E.V. Stenson e	et al., Journal of Plasma
		10^{12}	$5.3 \mathrm{~m}$ Physics, 2017)	
		$10^{12} (e + /e -)$	plasma) 3.8 m	
		10^{20}	0.53 mm	
		$10^{21} - 10^{22}$ (e	+/e- plasma) 0.1–0.4 mm	
		10^{22}	$53~\mu{ m m}$	
		10^{25}	$1.7~\mu{ m m}$	
$n_e \ ({\rm m}^{-3})$	Т	$\lambda_D ~({ m mm})$	system	
10 ¹¹	$0.1 \mathrm{eV}$	10	ionosphere	_
10^{12}	$1 \mathrm{eV}$	5	low-temperature electron/positron plasma	a
10^{22}	$50 { m MeV}$	0.4	laser-produced electron/positron plasma	
10^{20}	10 keV	0.1	MCF plasma	
10^{31}	10 keV	10^{-7}	ICF plasma (imploded)	8

COLLISIONAL EFFECTS

- Creation and annihilation of particles
- Neglectable if plasma frequency higher than collision

frequency

- Annihilation useful for diagnostics
- Positronium can form

(R G Greaves and C M Surko 2002 in Non-Neutral Plasma Physics IV, 10-23)

ACOUSTIC WAVES

- Wave is driven by electron pressure and ion mass
- Pressure perturbation causes charge separation

 n_e

 n_0

- Electric field is created
- Acoustic ion wave forms
- No charge separation arises in EPPs due to mass symmetry

(http://novotest.biz/basics-of-acoustics-I-4-types-of-waves-and-laws-of-propagation-of-acoustic-waves-acoustic-field/)

DRIFT WAVES

- Gradient in thermal pressure leads to drift wave
- Component of electric field perpendicular to magnetic

field produced drift

- Universal instability
- EPPs don't have drift waves

CONFINEMENT

PAULTRAPS

- Dynamic quadrupole field
- Two oscillating fields, one static
- Ions pulled up and down and pushed in radially
- Then pulled out radially and pushed in axially
- Slow down positrons before injecting

(https://en.wikipedia.org/wiki/Quadrupole_ion_trap)

13

(https://decarolichiara.medium.com/a-briefhistory-of-ion-traps-for-quantum-informationprocessing-caal93bc4585)

DIPOLE CONFINEMENT

- Considered in the 1960s/70s
- Levitated coil
- Self-organization and stability
- 10¹⁰ electrons confined for 300s

(https://en.wikipedia.org/wiki/Levitated_dipole)

(https://www.ipp.mpg.de/53799 74/Levitated_Dipole_apex)

CURRENT RESEARCH

APEX

- A Positron-Electron eXperiment at IPP
- Dipole-confined, low-temperature EPP
- $T_e\approx 1 eV$, $n_e\approx 10^{12}\;m^{-3}\;$, $V\approx 10^{-2}\;m^3$
- NEPOMUC as positron source

Accumulator is needed

(https://webarchiv.typo3.tum.de/PH/Is-sces/sces/forschung/positron-physics/experimental-facilities/nepomuc/index.html)

(https://hiddensymmetries.princeton.edu/sites/g/files/toruqf1546/files/stenson_-_simonssummerschool_2019.08.pdf)

Here you can see how the ring takes off (10x video speed)

> (https://www.youtube.com /watch?v=WdD8Y8WeE5g

EPOS

- Electrons and Positrons in an Optimized Stellarator
- Similar plasma volume, density and temperature targeted

No levitating coil is needed

EPOS

(https://hiddensymmetries.princeton.edu/sites/g/ files/toruqf1546/files/stenson_simonssummerschool 2019.08.pdf)

(https://www.ipp.mpg.de/4793936/nwg-19)

CONCLUSION

- EPPs are an active research topic
- Worth pursuing
- Strange behavior
- Overlap of astrophysics, antimatter physics and plasma physics

