

Dr. Philipp Lauber, Dr. G. Birkenmeier

- https://pwl.home.ipp.mpg.de/tum/2023_WS.html
- please choose a topic from the list below according to your level: pro-seminar/first contact students have priority on introductory topics
- contact us (<u>philipp.lauber@ipp.mpg.de</u>, gregor.birkenmeier@ipp.mpg.de) <u>by Oct 31st</u> via email with your preferred topic and one alternative (first come first serve basis);
- you are encouraged to choose your own topic (e.g. bachelors, masters, interns) related to your thesis/work

aim:

introductory/deeper knowledge about some aspects of plasma physics
train presentation skills:

- preparation of scientific material (reading/understanding)
- combine and present material in your own style/words/slides
- explain and 'teach' your material in class, answer questions

style:

- duration 25+15 mins, language English
- discussion: all attendants should try to ask questions
- prepare slides (and/or blackboard)
- slides to be discussed and iterated with Gregor/Philipp before the presentation (a couple of days before)

Basic Plasma Properties

classification of plasmas, Debye theory

derivation, consequences, application to ionosphere

cross section, Coulomb logarithm, friction force

models for describing plasmas: fluid - kinetic

$$\frac{d\rho}{dt} + \rho\,\nabla\cdot V \quad = 0,$$

$$\rho \frac{d\mathbf{V}}{dt} + \nabla p - \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{\mu_0} = \mathbf{0},$$

$$-\frac{\partial \mathbf{B}}{\partial t} + \nabla \times (\mathbf{V} \times \mathbf{B}) = \mathbf{0},$$

$$\frac{d}{dt}\left(\frac{p}{\rho^{\Gamma}}\right) = 0,$$

Charged particle motion in inhomogeneous magnetic fields

drifts, guiding centre description (numerical approaches: implicit, explicit, symplectic)

Confinement concepts

introductory Tokamaks (IET/AUG/IT60SA/ITER/DEMO)

Stellarators

introductory

basic concepts confinement experiments

Runaway electrons

Kinetic Alfvén waves: theory, applications in space/astro/fusion

Energetic lons in Tokamaks

Alfvén waves, resonant interaction, non-linear saturation

I.theoretical framework 2. experiment

introductory

Low temperature plasmas: principles and applications

© ZILLMER (2009)

Plasma Thrusters

The Sun

nuclear processes, solar structure, solar equilibrium and equations of state, radiation transport, convection

The solar Co

vind

NASA, easa/SOHO

solar structure, magnetic fields in the sun(dynamo), solar spots, the corona heating problem

history, origin, Chapman model (static), Parker Model, interaction with earth magnetic field

Electron-Positron Plasmas

theoretical properties, experimental setup

Confinement regimes

L-mode, H-mode, I-phase, I-mode, QH-mode, EDA-H-mode, Super-H-mode turbulence, magnetic confinement, transport barriers

H-mode ELMs

Divertor detachment

Plasma filaments in the scrape-off layer

PP

+ Plasmadiagnostiken...

Plasma diagnostics

C. Lechte et al., 2020 Plasma Sci. Technol. 22 064006

M. Griener et al., Review of Scientific Instruments 89, 10D102 (2018); https://doi.org/10.1063/1.5034446