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outline

•sources and creation of a super-thermal particle population
•particle motion in 2D and 3D systems, effect of static 
perturbations
•linear physics of resonant phenomena:

1. Experimental evidence
2. Alfvén waves, models, resonant excitation, codes
3. Energetic particle modes
4. n=1 modes

•non-linear phenomena and EP transport
1.perturbative regime
2.adiabatic regime
3.non-adiabatic regime
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other courses:  J.VanDam (IFS): http://home.physics.ucla.edu/calendar/
conferences/cmpd/talks/vandam.pdf

some references

plasma text books and lectures: Wesson, Stroth, Zohm, Guenter,…

http://www.physics.uci.edu/~wwheidbr/papers/Basic.pdf

experimental overview:

theoretical overviews: 
• Chen & Zonca: Physics of Alfvén waves and energetic particles in 
burning plasmas, RMP 2016

• Breizman & Sharapov: ‘Major Minority’ , PPCF 2011
• Ph. Lauber: Phys Rep, 2013
• Y. Todo, [2020]

R.Fitzpatrick:  http://farside.ph.utexas.edu/teaching/plasma/Plasmahtml/

these slides can be found @ http://www2.ipp.mpg.de/~pwl/

http://home.physics.ucla.edu/calendar/conferences/cmpd/talks/vandam.pdf
http://home.physics.ucla.edu/calendar/conferences/cmpd/talks/vandam.pdf
http://home.physics.ucla.edu/calendar/conferences/cmpd/talks/vandam.pdf
http://home.physics.ucla.edu/calendar/conferences/cmpd/talks/vandam.pdf
http://home.physics.ucla.edu/calendar/conferences/cmpd/talks/vandam.pdf
http://home.physics.ucla.edu/calendar/conferences/cmpd/talks/vandam.pdf
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if ignition condition is fulfilled: 
thermonuclear self-heating 

for the first time expected to happen in ITER

thermal background:        15 keV
energetic alpha particles:  3.5 MeV

alpha particles transfer their energy via 
Coulomb collisions to the plasma background 
and thus keep it at the required temperature

cross section for Coulomb collisions depends 
strongly on energy:  σ ~ 1/Wkin2

superthermal (‘fast’) particles in 
magnetised fusion plasmas

478th Heraeus Seminar, April 2011

‘Locust’ Monte Carlo calculation 
for mono-energetic beam
with diffusion [CCFE, UK]

Neue Physik an ITER

Zum ersten mal in ITER:
thermonukleare Selbstheizung des Plasmas

thermischer Hintergrund: 20 keV
schnelle He-Kerne:          3.5MeV

geben ihre Energie durch Coulomb-
stöße an den Hintergrund ab und
halten ihn so auf der für die Fusion
benötigten Temperatur

Helmholtz-Gemeinschaft, November 2008 2

•α-particles slow down on electrons,
  isotropic in pitch angle

•injected beam ions can be very 
accurately modeled by Monte-Carlo 
codes in general geometry  
(electron drag)

•ion cyclotron heating modeled by 
quasilinear diffusion operator  
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with P̂ and n̂ are the normalised pressure resp. density. To compare with the equation for

shear Alfvén modes derived from the standard MHD model, one identifies ∇P
iωB (b ×∇)ψ

with the perturbed pressure and uses the vector identity (66). Then one obtains for the

pressure term (4-th addend):

µ0∇P1 ·∇× B

B2

From the ideal MHD side, line (85) can be derived using ∇j1 = 0, the linearised force

balance and ideal Ohm’s law [1]. Therefore all ideal MHD results can be recovered from

the GKM equation.

4.3 α-Particles

Due to their high energies compared to the background, fusion born α-particles are not

Maxwellian. Instead, one usually chooses the following distribution function:

F0 = CψF0ψ · CE

E3/2 + E3/2
c

Erfc[
E − E0

∆E
] (86)

This expression is called ’slowing-down’ (see figure 8), because it describes the drag of

the background electrons and ions on the fusion born α’s, derived from the Fokker-Planck

equation under the assumptions that D and T have the same energy Ti and the energy

spectrum is approximately Gaussian [39].

For F0ψ one often uses 1/(exp[(ψ − ψ0)/∆ψ]+1) or also (1−s2)3 with s ∝
√

ψ. Parameters

that are likely to fit the ITER experiment [40] are:

∆E = 335.2keV, E0 = 3520keV, Ec = 329.6keV, ψ0 = 0.2, ∆ψ = 1/14

Since this distribution is given in terms of E, a coordinate change from U, µ to E, Λ is

advantageous:
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32

distribution of fast ions is well known... 

D-T fusion

ITER
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external wave heating (electron or ion cyclotron resonance) 
injection of a beam of energetic neutral particles (NBI)

superthermal (‘fast’) particles in 
magnetised fusion plasmas

neutral beam boxes at ASDEX Upgrade, 
Garching

ion cyclotron launcher at 
JET(Culham, UK)

ωc=eB/m
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typical properties of energetic particles (EPs)

•  in addition to thermal , i.e. Maxwellian background in a 
fusion relevant plasma there are  highly  energetic 
particles with:

• high temperature: TEP>>Ti,Te
• small density: nEP << ne,in
• pressure ~ (nT)EP ~ (nT)back

• can be non-Maxwellian: slowing down distribution
• or anisotropic in parallel velocity (NB) or pitch angle 
(ICRH)

• energetic fusion α profile is peaked in the plasma 
centre
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birth, life and death of alpha particles

• produced with rate ∂N/∂t = nD nT 
<σv> at peaked at energy=3.5MeV 

• particles slow down via Coulomb 
collisions - smooth distribution in 
time τs (slowing down time)

• after some longer time τM the 
particles thermalise against 
electrons and ions to become 
Maxwellian at Tα=TD,T 

• confinement time for α’s: τα; 
• in steady state, there are two α-
populations: slowing down α’s and 
thermal α-ash 

• τα ~10 τM ~1000 τs; ; α’s have time 
to thermalise: He-ash problem

25

Birth, Life, & Death of � Particles
• DT alphas are born in peaked

distribution at 3.5 MeV at rate �na/� t
= nDnT<��v>

– During time �s, they are slowed down by
collisions with electrons to smoother
distribution at ~ 1 MeV

– After time �M, they thermalize against
both electrons and ions to the plasma
temperature (Te ~ Ti ~ 10 keV)

– Alphas are confined for time ��. In steady-
state there are two alpha populations:
slowing-down �’s (ns) and cool
Maxwellian �’s (nM)

• Typically �� ~ 10 �M ~ 103 �s : hence �’s
have time to thermalize

– Since ns / n� ~ �s / �� ~ 10-3, then nM ~ n�
~ ne (for reactors); hence “ash” (slow �’s)
is a problem in reactors, because it will
“poison” the plasma

Birth velocity:

v� 0
D�T = 1.3�109cm / s

birth velocity
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Assume that we have a constant heating 
input or fusion power - how does the 
distribution function of the energetic 
ions looks like after ‘sufficient’ long time?
What determines this time(s) τs?



Coulomb collisions:
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Ṅ = f(v2)
3v2 s(u,χ)u Ωu ≡ f(v2)

3v2 σ(u,χ)u Ωu.

σ
2

Ω
f(v2)

3v2 u 2

σ Ω Ω

χ
θ Ω = 2π sinχ χ=dN/n



Advanced Courses EP, 2020

momentum exchange: c
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Slowing down times and free mean path

[Wesson]

slowing down time >> Alfvén/sound wave times
for many problems, an ‘equilibrium collisionless’ EP distribution 

function can be assumed

energy relaxation time between ions and electrons

assume also distribution
for species 1 →



Typical distribution functions: NBI at AUG

ASDEX Upgrade
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  NBI distribution function 

• TRANSP/nubeam output shows strong 
anisotropy

•drive of this branch of the GAM has been 
demonstrated by Zarzoso, PoP 2012

•EP density is low: nf/ne=0.5-1%
•peak βfast  = 0.05% (peak βplasma  = 0.3%)
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α-particles at ITER: isotropic in pitch angle

Equilibrium with 15MA current�

22 

q=1 at r/a=0.15, 0.31, 0.38�

zoom�

*IDM DATA folder: Plant Breakdown Structure / TBD. Plasma / 10.1.1 
Plasma Confinement/EnergeticParticles / ITER reference data for EP 
modeling/ Equilibrium/ Update2011/ 15MA plasma equilibrium�

ITER steady state scenario�

!  Steady state scenario (on ITER web*) 
!  R=6.2m, a=2m, B=5.3T, I=9MA 
!  ASTRA, EFIT�

*IDM DATA folder: Plant Breakdown Structure / TBD. Plasma / 10.1.1 
Plasma Confinement/EnergeticParticles / ITER reference data for EP 
modeling/ Equilibrium/ Update2011/ 9MA plasma equilibrium�

15MA 9MA

NUBEAM: Fokker Planck 
model for slowing down, 
pitch angle scattering, and 
energy diffusion

in addition: Ion cyclotron resonance heating

can now also 
be calculated 
in real time!
[RABBIT]
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outline

•sources and creation of a super-thermal particle population
•particle motion in 2D and 3D systems, effect of static 
perturbations
•linear physics of resonant phenomena:

1. Experimental evidence
2. Alfvén waves, models, resonant excitation, codes 
3. Energetic particle modes
4. n=1 modes

•non-linear phenomena and EP transport
1.perturbative regime
2.adiabatic regime
3.non-adiabatic regime
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geometry: the Tokamak

2.1. MAGNETIC CONFIGURATION AND PARTICLE TRAJECTORIES

Figure 2.2: Particle trajectories in a tokamak. The left hand side picture illustrates the three angular
components of a trapped particle trajectory. The right hand side picture is a poloidal projection of the
trajectories of a passing and a trapped particle.

called trapped particles and their trajectories have the shape of a banana when projected
onto a poloidal cross-section. To understand this behavior, we need to recall that the mag-
netic field of a toroidal configuration cannot be uniform, but varies like 1/R (Eq. 2.9). Let us
now consider a particle characterized by the invariants E and µ and use the approximation
that B(0) ⌃ BT(0), it directly comes that µ = (E �mv2

⇤/2)/B(0) � R(E �mv2
⇤/2). Hence,

if the particle approximately follows a helical field line and comes nearer to the axisym-
metry axis, R ⌥ 0, the simultaneous invariance of E and µ may enforce a cancellation of
v⇤, which means that the particle (or more exactly its guiding-center) will bounce back to
the outer region of the tokamak. If v⇤ does not cancel, the particle is called passing particle.

The existence of trapped particles is a first evidence that the motion of charged particles
is not purely along the field lines. More explicitely, it can be shown that the guiding-center
motion is, as expected, mainly parallel but that it also contains a drift. Explicitely,

Ẋ = v⇤b + vg + O(⇥⇥2 vt) (2.15)

where vg, called the drift velocity, contains three physical components related to the pres-
ence of an electric field and to the magnetic field non-uniformities, vg = vE�B+v⌅B+vc with

• vE�B = E(0)�B(0)

B2
(0)

, the E⇤B drift

• v⌅B = µ
e b(0) ⇤

⌅B(0)

B(0)
, the grad-B drift

• vc = mv�
eB(0)

b(0) ⇤ � , the curvature drift

where b(0) = B(0)/B(0), and � = b(0) ·  b(0) is the field local curvature. When E(0) is
chosen such that the E ⇤ B drift is only first order compared to ⇥⇥, which is the case in
standard discharges (where E(0) is mainly parallel for toroidal current generation), vg is
shown to be only first order in ⇥⇥.

Note that the above developments would still be correct with slowly varying fields,

1
�c

1
B(0)

dB(0)

dt
⇧ ⇥⇥. (2.16)

13

particle orbits

Geometry/drifts: particle orbits in Tokamaks

drifts due to curvature and inhomogeneity of the magnetic
field:

vd =
b
Ωc

× (v2
∥κ +

v2
⊥
2

∇B

B
) with κ = (b · ∇)b

Z

RΦ

• polarisation drift: time-dependent electric field

• diamagnetic drift ω∗: caused by temperature and density
gradients
ωp∗ = ω∗n + ω∗T = Ti/(eB)kθ(∇n/n)(1 + η)
and η = ∇T

T /∇n
n

IPP Colloquium, Garching, January 2009 13

motion mainly along the magnetic field line

curvature and gradients of the B field cause 
perpendicular drifts

[Ch. Nguyen, PhD 2010]

q=  number of toroidal field line turns
      number of poloidal field line turns 

existence of flux surfaces: radial coordinate Ψ

∇p=j×B

478th Heraeus Seminar, April 2011

geometry: Tokamak

!p=j!B

plasma current

main field coils

OH-transformer

vertical field coil

magnetic field line

poloidal angle

major radius

toroidal angle

minor radius

Figure 2: The Tokamak configuration

suppresses instabilities connected with a pure poloidal or pure toroidal field.

From these geometrical facts together with a current profile that balances the pres-

sure gradient via the Lorentz force, an equilibrium magnetic field can be calculated.

A typical spatial profile is shown in figure 3.

The periodicity in the poloidal angle immediately explains the ‘new’ frequencies

mentioned above: in addition to the total kinetic energy of a particle, also the mag-

netic moment µ = mv2
⊥/2B is an adiabatic invariant of the motion. Therefore it is

required that v∥ has to be smaller in regions where B becomes larger according to

const = E =
1

2
mv2

∥ + µB. (3)

6

existence of flux surfaces: radial coordinate  "

q=  number of toroidal field line turns
      number of poloidal field line turns 
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The Tokamak Concept
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passing and trapped particles

θ
r

|B|

R

2.1. MAGNETIC CONFIGURATION AND PARTICLE TRAJECTORIES

q can be shown to be a flux surface label defined by

q ⌅ �d⇥
d⇤

=
B(0) ·⌥⇤

B(0) ·⌥⇥
. (2.5)

q is an important parameter for tokamak studies, called the safety factor. It is a measure
of the magnetic field helicity, whose absolute value precisely corresponds to the number of
toroidal turns that a field line does while performing a single poloidal turn. For a plasma
current flowing in the direction of the toroidal magnetic field, (�⇤, ⇥, ⇤) is a right-handed
coordinate system, and q is positive.

Note that ⇥ and q, being flux surface labels, may be chosen as alternate radial coordinates.
More commonly, the radial coordinate r = a

�
⇥/⇥(a) is considered, since it can be shown

to have an approximate regular behavior, close to the intuitive idea of a radius.
Using r, we can define a commonly used quantity, the shear which is simply the nor-

malized derivative of q,

s =
r

q

dq

dr
. (2.6)

Finally, we note that in a tokamak configuration, axisymmetry provides a simplified
expression for the field. Indeed, ⇤ may be chosen to be the axisymmetry angle, such that
the coordinate system (�⇤, ⇥, ⇤) becomes partially orthogonal. Hence, B(0) can be written

B(0) = ⌥⇤⇤⌥⇤ + I⌥⇤, (2.7)

with I a flux label I(⇤) = R2B(0) ·⌥⇤, R the distance to the axisymmetry axis [8].

Simplified large aspect ratio equilibrium

The calculation of the flux surfaces arrangement involves the resolution of the so-called
Grad-Shafranov equations [9]. For a circular set-up and with a large aspect ratio assumption
��1 ⌃ 1, the solution of the Grad-Shafranov equation to the second order in � is a set of
nested circular flux surfaces radially shifted in the torus outward direction. In a poloidal
cross-section, the corresponding flux surfaces characteristic equations can be expressed in a
simple way using the radius R and the vertical direction Z by

R = R0 + r cos ⇥ ��(r), Z = r sin ⇥, (2.8)

where � is called the Grad-Shafranov shift. For simplicity, most subsequent computation
make use of this approximation, sometimes with the additional assumption that � = 0.

Applying Ampère’s law, the toroidal field is found to be inversely proportional to R,

BT(0) =
B0R0

R
, I(⇤) = BT(0)R = B0R0 (2.9)

with B0, the central field (taken at R = R0 and r = 0). In the large aspect ratio limit with
� = 0, it follows that

B(0) ⇧ B0(1�
r

R0
cos ⇥), q =

r

R0

BT(0)

BP(0)
(2.10)
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Mirror condition for magnetic surface r: 

Mirror condition: 

ε/R<<1: 



Fraction of trapped particles 

Estimate banana width: 

i.e. deviation from magnetic surface (assume v|| small): 



Time to complete  a banana orbit: v|| x L (length of a field line)  

Banana width~ vDΔt (Δt :time to sample a banana orbit) 

Banana width: 

Maximal banana width: Δϑ=π, corresponds to 

banana width



trapped and passing guiding 
centre orbits

width of passing orbits: wB/2

toroidal precession of a banana orbit
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symmetries⇔constants of motion
2.1. MAGNETIC CONFIGURATION AND PARTICLE TRAJECTORIES

Figure 2.2: Particle trajectories in a tokamak. The left hand side picture illustrates the three angular
components of a trapped particle trajectory. The right hand side picture is a poloidal projection of the
trajectories of a passing and a trapped particle.

called trapped particles and their trajectories have the shape of a banana when projected
onto a poloidal cross-section. To understand this behavior, we need to recall that the mag-
netic field of a toroidal configuration cannot be uniform, but varies like 1/R (Eq. 2.9). Let us
now consider a particle characterized by the invariants E and µ and use the approximation
that B(0) ⌃ BT(0), it directly comes that µ = (E �mv2

⇤/2)/B(0) � R(E �mv2
⇤/2). Hence,

if the particle approximately follows a helical field line and comes nearer to the axisym-
metry axis, R ⌥ 0, the simultaneous invariance of E and µ may enforce a cancellation of
v⇤, which means that the particle (or more exactly its guiding-center) will bounce back to
the outer region of the tokamak. If v⇤ does not cancel, the particle is called passing particle.

The existence of trapped particles is a first evidence that the motion of charged particles
is not purely along the field lines. More explicitely, it can be shown that the guiding-center
motion is, as expected, mainly parallel but that it also contains a drift. Explicitely,

Ẋ = v⇤b + vg + O(⇥⇥2 vt) (2.15)

where vg, called the drift velocity, contains three physical components related to the pres-
ence of an electric field and to the magnetic field non-uniformities, vg = vE�B+v⌅B+vc with

• vE�B = E(0)�B(0)

B2
(0)

, the E⇤B drift

• v⌅B = µ
e b(0) ⇤

⌅B(0)

B(0)
, the grad-B drift

• vc = mv�
eB(0)

b(0) ⇤ � , the curvature drift

where b(0) = B(0)/B(0), and � = b(0) ·  b(0) is the field local curvature. When E(0) is
chosen such that the E ⇤ B drift is only first order compared to ⇥⇥, which is the case in
standard discharges (where E(0) is mainly parallel for toroidal current generation), vg is
shown to be only first order in ⇥⇥.

Note that the above developments would still be correct with slowly varying fields,

1
�c

1
B(0)

dB(0)

dt
⇧ ⇥⇥. (2.16)
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adiabatic invariants (expand Hamiltonian in asymptotic series)

   magnetic momentum 

exact invariant (if axisymmetry)

CHAPTER 2. FUNDAMENTALS

Action-angle variables

In the previous section, we explained that a Hamiltonian description of particle motion could
be powerful, and lead to simple insightful motion equations when expressed in canonical
variables. However, when going from the particle variables (x,p) to the guiding-center
variables (X, µ,E, ⇥), canonicity is lost. Fortunately, in the tokamak geometry, it is possible
to display a canonical system of variables which is consistent with the decoupling
of the gyromotion and guiding-center motion. Moreover, if follows from the tokamak
periodicity in ⌅ and ⌥ that the particle motion is quasiperiodic at equilibrium, and the chosen
system of coordinates can be taken to be a system of action-angle variables (�,J). Action-
angle variables are a particular type of canonical variables appropriate for periodic systems
where the “spatial” variables are angles and the momenta (or actions) are motion invariants,
that is,

J̇ = �
↵H(0)

↵�
= 0, �̇ =

↵H(0)

↵J
= �(0)(J) (2.29)

Hence, this description does not only provide canonicity but also physical motion invariants,
to which µ belongs. Moreover, the characteristic eigenfrequencies of the periodic particle
motion can be directly derived, and the question of the time decoupling of the di⌅erent
periodic motion directly assessed. In particular, for the understanding of the resonances
between waves and energetic particles, it is necessary to know these eigenfrequencies.

A derivation of the set of action-angle variables used in this thesis is provided in Ap-
pendix B.1, which closely follows Refs. [13, 14, 15]. The motion is found to be divided into
three angular periodic motions

� = (�1, �2, �3) = � t = �0 + �
⌥ �

0

d⌅

⌅̇
(2.30)

(where �0 stands for the initial phase-space position) with invariant eigenfrequencies
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eB(0)

m
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1
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1
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1
�̇

vD ·
�
�q⇤(⇥̄)⌅⇧⇥ +⇧(⌥� q(⇥̄)⌅)

⇥

+ ⇤passing q(⇥̄)⇤b

(2.31)

where the first angular motion is found to be related to the gyromotion ⇥, the second to
the poloidal motion described by ⌅ also called the bounce motion, and the third, called
precessional drift, to the particle drift in the toroidal direction. The three angular motions
can be clearly identified in the 3-D picture of Fig. 2.2. The bounce integral (⇤b/2⌃)

⇧
(d⌅/⌅̇)...,

present in the eigenfrequencies expression, allows to remove the fields ⌅-dependence. For
passing particles,

⇧
=

⇧ 2⇥
0 , whereas for trapped particles oscillating between the ⌅-angles

[�⌅0, ⌅0],
⇧

= (1/2)
⌃ ��0

��0
(the full closed banana) ⌅

⌃ �0

��0
.

The corresponding invariant momenta are

J1 = m
e µ

J2 =
⇧

d�
2⇥

B�
B(0)

mv⌅ + e
⇧

d�
2⇥� ⌅

⇧
d�
2⇥

r2

qR0
mv⌅ + ⇤passing e�(J3)

J3 = e⇥ + I(�)
B(0)

mv⌅ ⌅ e⇥ + Rmv⌅

(2.32)
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The Tokamak Concept
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many non-standard orbits possible:

with axissymmetry: stagnation orbits, potatoe orbits

[A. Bierwaage]

breaking axissymmetry:super-banana orbits (field ripple)
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Poincare plots of particle orbits
in presence of perturbations

•w~√A
•overlapping islands 
form stochastic 
regions

[Ascot]ITER AUG

ITER w/o correction coils
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symmetry breaking decreases EP confinement  

static perturbations: field ripple, ELM coils, magnetic islands 
leads to stochastic particle orbits

Fast Ion Wall Loads in AUG with ELM Coils

O-15     O. Asunta et al.

Impact of RMP by ELM Coil in ITER 15 MA Scenario

Alpha particles born in the region 
where �N >0.7 are expelled.

n=4 RMP

P2-10    K. Shinohara  et al.

ITER,15 MA scenario: alpha particles 
outside
ψn> 0.7 are not confined since field lines 
can become stochastic
exact number and wall load depends on 
details like model for field penetration, 
ferritic inserts and coil currents/phase  

[AUG, Suttrop]

[Shinohara, 2011]

PΦ not a constant of motion any longer
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P2-10    K. Shinohara  et al.

[steady state scenario:Tani, NF 52, 2012]

[NF, 2011]

[Ascot 2012-2016]: plasma response is not dramatically 
changing the losses, RMPs can
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Magnetic field ia a stellarator: W7-X

courtesy: M. Borchardt

Advanced Plasma Physics Courses Fast Particles 2 / 31
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particle orbits in stellarators
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•sources and creation of a super-thermal particle population
•particle motion in 2D and 3D systems, effect of static 
perturbations
•linear physics of resonant phenomena:

1. Experimental evidence
2. Alfvén waves, models, resonant excitation, codes 
3. Energetic particle modes
4. n=1 modes

•non-linear phenomena and EP transport
1.perturbative regime
2.adiabatic regime
3.non-adiabatic regime
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ion-
gyration

typical fusion plasma:
important time and length scales

10-9       10-7           10-5            10-3        10-1        101  time[s]

confinement time/
dimension
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collision/thermalisation time
energy exchange time

electron
gyration

Alfvén-
waves

ion sound
waves

length[m]
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100

10-5

ωc=eB/me

ωc=eB/mi

thermal electrons:
pol./tor. transit time

α:pol.transit time

thermal ions:
pol.transit time

α: tor. precession
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resonances between fast particles and plasma waves

vth,ionen  <<   vAlfvén  ≈  vα     <<    vth,el

Energetic particles - a problem?

VTi        <<        V A        ≤      V α       <<        V Te

VTi   = 0.9 x 10  m/s  
6 Vα   =  12 x 10  m/s  

6

 VA   =   8 x 10  m/s  
6 VTe   = 60 x 10  m/s  

6

↓
↓

↓
↓

energetic particles interact effectively with weakly damped
Alfvén modes - much better than background plasma

⇒  modes can be driven unstable (inverse Landau damping)
⇒  effective transport of energetic ions out of the central region,
decreasing heating efficiency, deterioration of ignition condition,
damaging first wall due to large particle fluxes   

resonant wave-particle interaction 
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resonant interaction:  Landau damping

‣destabilisation of global, collective modes

‣transport of energetic particles from the hot plasma centre
‣more difficult to reach ignition condition
‣possible damage of confining structures by large particle flux

‣remove helium ash from hot core 
‣Alfvén spectroscopy:  frequency and localisation of mode allows to 

determine important plasma parameters (e.g. current profile)

Welle-Teilchen Resonanzen

Druck [kPa]

Radius[m]

thermisch

energetische
Teilchen

60

30

0 0.6

Druckgradient
der energetischen
Teilchen destabilisiert 
schwach gedämpfte, 
globale Eigenmoden

Mechanismus:

! !k

inverse Landau- 
Dämpfung

v   " vAlfvén#    

Multi-Skalen-Problem: Mikro (Dämpfung), Meso (Drive), Makro (Mode)

Helmholtz-Gemeinschaft, November 2008 5
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M. Garcia Munoz et al. Rev. Sci. Instum 80, 053503 (2009) 
M. Garcia Munoz et al. Phys. Rev. Lett. 100, 055005 (2008) 

Soft X-ray fast ion loss
detector
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Fast Ion experiments at ASDEX Upgrade: NBI

V Igochine, A Gude [2009]

I. Classen [EPS 2011]

tangential 
beam, 2.5MW, 
93keV
βfast(0)=0.7%
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energetic particle driven modes in the experiment

magnetic spectrogram , ASDEX Upgrade #25506

many modes with different characteristics are detected at the plasma 
edge - global, electromagnetic perturbations
toroidal and poloidal mode number analysis possible

neutral injection @0.3s

[M Maraschek]
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Investigation�of�fast�particle�driven�instabilities�by�ECE�Imaging�

Figure 4a shows a zoom of the ECEI spectrogram of figure 2, around the qmin=2.5 crossing. The mode 
labeled � is an m/n=5/2 RSAE, whose experimental 2D mode structure is shown in figures 4b and c. 
Figure 4b gives the amplitude A of the mode (about 1.5% relative temperature fluctuation), and figure 
4c includes the phase information (Acos(�)), enabling an estimation of the poloidal mode number m. 
The simulated 2D mode structure of this mode, calculated by LIGKA, is shown in figure 4d, showing 
good agreement with experiment (measurement position of ECEI indicated by the white box). Also, 
the starting frequency and frequency evolution is nicely reproduced by LIGKA. 
In experiment, often modes with a higher radial harmonic are observed [13], meaning the mode 
structure does not have a single maximum in radius as is the case for the mode shown in figure 4b, but 
two radial maxima are observed (it is located at two poloidal ‘rings’). The mode labeled � in figure 4a, 
whose experimental mode structure is shown in figures 4e and f, is an example of such a mode. The 
LIGKA simulation for mode � is shown in figure 4g. Like the 1st radial harmonic mode �, also the 2nd 
radial harmonic mode � is an m/n=5/2 RSAE. The amplitudes of such 2nd harmonic modes are 
observed to be comparable to the associated 1st harmonic modes (about 1% for mode �). These 2nd 
harmonic modes are observed simultaneously with their 1st harmonic counterpart, but are always 
observed at a lower frequency. The frequency difference between modes � and �, �f, is about 8kHz. 
 

 
Figure 4. Figure a gives the ECEI spectrogram around the qmin=2.5 crossing showing various 
RSAEs. Figures b and c respectively show the 2D amplitude and mode structure (Acos(�)) of the 
1st radial harmonic mode labelled � in figure a. The 2nd radial harmonic mode (�) is shown in 
figures e and f. The simulated mode structures from LIGKA are given in figures d and g. 
 

LIGKA simulations showed that �f depends on the exact shape of the q-profile. A strongly reversed q-
profile results in a larger �f than a shallow q-profile. Figure 5 shows the dependence of �f on the q-
profile shape (strongly reversed profiles characterized by a high second radial derivative of q at Rqmin), 
making �f a possible diagnostic for the q-profile shape. Also the damping rate (�d/�) for both the 1st 
and 2nd harmonic modes (here labeled p=0 and p=1 respectively) is plotted as a function of the q-
profile shape, showing that a shallow q-profile favors the 2nd radial harmonic modes. For the q-profile 
shape belonging to the experimentally observed �f of about 8kHz, the corresponding damping rates 
for modes � and � are equal (about 2%), explaining the equal mode amplitudes. 
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Investigation�of�fast�particle�driven�instabilities�by�ECE�Imaging�

One of the main open questions concerning Alfvén instabilities is the non linear evolution of the mode 
amplitude. Various types of behavior, ranging from a steady state amplitude to an explosive growth, 
are predicted [5], and the type of behavior is expected to greatly influence the impact of the 
instabilities on the fast particle transport. The BAE modes reported in this paper are observed to make 
a transition from almost steady state to bursting. 
Although this paper solely deals with the ASDEX Upgrade ECEI results, related experiments, yielding 
data on RSAEs, have recently been conducted using an ECEI diagnostic on DIII-D [6]. 
 
2. Electron Cyclotron Emission Imaging; diagnostic and data analysis 
The 2D ECEI diagnostic on ASDEX Upgrade (AUG) [3] provides a localized, high resolution 2D 
measurement of the electron temperature and its dynamics. The principle of a 2D ECEI diagnostic is 
comparable to a standard 1D heterodyne ECE radiometer, except that multiple lines of sight (16 on 
AUG) are simultaneously quasi-optically imaged onto a linear array of (16) diode detectors. Each of 
the lines of sight is treated as a 1D ECE radiometer, measuring the ECE intensity in a number of 
frequency bands (8 on AUG). This results in a direct 2D measurement of the electron temperature in a 
2D array of 8 (horizontal) by 16 (vertical) positions (128 channels total) in the poloidal plane, 
covering an area of typically 10 by 40 cm. The position of this measurement area can be adjusted 
horizontally by tuning the diagnostic to different frequencies, simultaneously shifting the position of 
one of the lenses to adjust the position of the focal plane. For the experiments described in this paper, 
the system was tuned to measure just to the low field side of the plasma centre (range R=1.70-1.85m) 
as indicated in figure 1, and the data were sampled at 1 MHz. 

 
Figure 1. Overview of the ASDEX Upgrade ECEI system. The 16 lines of sight (3 are shown) are 
imaged onto an antenna array. The electron temperature is measured at 8 positions along each line 
of sight, giving 128 channels in an 8 by 16 array in the poloidal plane. Part of the ECEI optics is 
shared with a 60 channel 1D ECE radiometer. 
 

The accuracy of any ECE diagnostic is limited by thermal noise, which in these experiments amounts 
to a relative noise level of about 3%. The relative temperature fluctuations associated with Alfvén 
eigenmodes are typically 1%, so significantly below the noise level. To overcome this noise, the data 
has to be filtered. The data presented in this paper are subsequently filtered using (truncated) singular 
value decomposition (SVD) filtering and Fourier frequency selection. The SVD filtering enhances the 
coherent data content (fluctuations present on most channels simultaneously) and filters out most of 
the (incoherent) noise. The Fourier filtering drastically reduces the bandwidth of the signals, greatly 
reducing the thermal noise. Both filtering procedures are described in more detail in [3]. After 
filtering, direct observation of small amplitude fluctuations like the RSAEs is possible. For the 
weakest modes, a further averaging of the mode structure over time was required. 
 
3. Shot overview 
A series of shots with strong Alfvén activity has been analyzed. Basically, two types of modes were 
observed: RSAEs (implying a reversed shear q-profile) when NBI heating was applied early, and 

temperature fluctuations:  
electron cyclotron emission imaging (ECEI)

[I Classen, 2010]

direct measurement of the 
2-D mode structure on a 

poloidal cross section! 
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ASDEX Upgrade
Confirmation by recent measurements at AUG (#23824)
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fluctuations in radiated soft X-ray spectrum:

determination of radial position
[V Igochine]
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ASDEX Upgrade
comparison with experiment

The Fast Ion Loss Detector

directly measure the escaping fast ions [M.Garcia-Munoz, 2006-2009]

←B
pitch angle

← B

gyro radius

scintillator plate

DPG-Frühjahrstagung , Greifswald, April 2009 26

ASDEX Upgrade
Confirmation by recent measurements at AUG (#23824)
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ASDEX Upgrade
Confirmation by recent measurements at AUG (#23824)
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[Ph. Lauber, PPCF ,2009; M.G-Munoz,PRL 2010] 

5 MW ICRF H minority heating
 2 MW NBI (62keV)

q=1.5 q=1

Fast Ion experiments at ASDEX Upgrade: ICRF
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direct measurement of fast ion population:

FIDA

neutron rate

[B Geiger]

FIDA (fast ion Dα)
 diagnostic:

sawtooth crash

[B. Heidbrink 2010]
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other diagnostics: 

•reflectometry: frequency hopping mode: cut-off density and profile shape play crucial 
role important for determination of mode position
•interferometry
•collective Thomson scattering
•γ-ray spectroscopy
•neutron measurements
•neutral particle analyser; imaging NPA
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[SXR]
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•sources and creation of a super-thermal particle population
•particle motion in 2D and 3D systems, effect of static 
perturbations
•linear physics of resonant phenomena:

1. Experimental evidence
2. Alfvén waves 
3. Energetic particle modes
4. n=1 modes

•non-linear phenomena and EP transport
1.perturbative regime
2.adiabatic regime
3.non-adiabatic regime
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“Father of Plasma Physics”
• Hannes Olof Gösta Alfvén

– Born May 30, 1908 (Norrköping,
Sweden); died April 2, 1995

• Career at a glance:
– Professor of electromagnetic

theory at Royal Institute of
Technology, Stockholm (1940)

– Professor of electrical engineering
at UCSD (1967-1973/1988)

– Nobel Prize (1970) for MHD work
and contributions in founding
plasma physics

Hannes Alfvén received the Nobel Prize
in Physics in 1970 from the Swedish
King Gustavus Adolphus VI

[J. VanDam]
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5

Huge Influence
• Contributions to plasma physics

– Existence of electromagnetic-hydromagnetic (“Alfvén”) waves (1942)
– Concepts of guiding center approximation, first adiabatic invariant, frozen-in flux
– Acceleration of cosmic rays (--> Fermi acceleration)
– Field-aligned electric currents in the aurora (double layer)
– Stability of Earth-circulating energetic particles (--> Van Allen belts)
– Effect of magnetic storms on Earth’s magnetic field
– Alfvén critical-velocity ionization mechanism
– Formation of comet tails
– Plasma cosmology (Alfvén-Klein model)
– Books: Cosmical Electrodynamics (1950), On the Origin of the Solar System (1954),

Worlds-Antiworlds (1966), Cosmic Plasma (1981)

• Wide-spread name:
– Alfvén wave, Alfvén layer, Alfvén critical point, Alfvén radii, Alfvén distances, Alfvén

resonance, …

[J. VanDam]
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Factoids
• His youthful involvement in a radio club at school later led (he

claimed) to his PhD thesis on “Ultra-Short Electromagnetic Waves”

• He had difficulty publishing in standard astrophysical journals (due to
disputes with Sydney Chapman):  Fermi “Of course” (1948)

• He considered himself an electrical engineer more than a physicist

• He distrusted computers

• The asteroid “1778 Alfvén” was named in his honor

• He was active in international disarmament movements

• The music composer Hugo Alfvén was his uncle

[J. VanDam]



→
linearise

start: MHD equations

combine into:

Θ: angle between k and B0

[Fitzpatrick, lectures www]



Solubility condition: Det[M]=0

1.root: Alfven wave, 2nd and 3rd root: coupled waves 
with coupling strength vs2/vA2 ~ β/2

[fitzpatrick, lectures www]



vs = 0 : :

3 roots of dispersion relation:

[fitzpatrick, lectures www]
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straight peroidic cylinder

Shear-Alfvén Modes

• MHD shear Alfvén dispersion relation: ω = k∥vA;

• in a straight cylinder: k∥ = 1
R0

(n − m
q(r)); vA(r) = B(r)/ µ0min(r); q(r) = rBz/RBθ
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DPG-Frühjahrstagung , Greifswald, April 2009 5

Shear Alfvén waves in a cylinder

n=2

straight peroidic cylinder

Shear-Alfvén Modes

• MHD shear Alfvén dispersion relation: ω = k∥vA;

• in a straight cylinder: k∥ = 1
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dispersion relation:

straight peroidic cylinder

Shear-Alfvén Modes

• MHD shear Alfvén dispersion relation: ω = k∥vA;

• in a straight cylinder: k∥ = 1
R0

(n − m
q(r)); vA(r) = B(r)/ µ0min(r); q(r) = rBz/RBθ
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Alfvén Continuum - decoupled 
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→
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ts
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Eigenfunction

wave packet is strongly damped by continuum

DPG-Frühjahrstagung , Greifswald, April 2009 5

n: ‘toroidal’ mode number
m: poloidal mode number

periodic cylinder:   phase mixing, i.e. strong damping

Towards small-scale and low-frequency modes

Local and global description of the Kinetic Alfvén Wave and Ion Acoustic Wave

• inclusion of ion compressibility in LIGKA (H.L. Berk, UT
Texas, Austin)

• improved mesh refinement in kinetic part: near q = 1 surface
10 grid points per ⇥i (electron skin depth!)

• limitation due to FLR-expansion: ⇥ik� ⇥ 0.5

for JET parameters, B0 = 3.53T, R0 = 2.96m, m = 1, n =
1,� ⇤ 2%

Radius

1

 2

3

q(r)

T  (keV)e

Fachbeirat, Greifswald, June 2007 21

n(r) [1019]    
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Toroidal Alfvén Eigenmodes [Cheng, 1986]

2ω /ω2
A

m=3

m=2

m=4

Alfven Continuum - decoupled

r [m]

ω2/v2
A

1 0
0 1

=
k2
∥m 0

0 k2
∥m+1

ω2
1 = v2

Ak2
∥m, ω2

2 = v2
Ak2

∥m+1

toroidal
coupling
(n=2)
⇒

R ≈R0(1+ϵ cos θ)

B ≈B0(1−ϵ cos θ)

ϵ = r/R0

ω /ω 22
A

Alfven Continuum - coupled

r [m]

q

1.25

1.5

ω2/v2
A

1 −ϵ
−ϵ 1

=
k2
∥m ϵk2

∥m+1

ϵk2
∥m k2

∥m+1

ω2
1,2/v2

A =
k2
∥m+k2

∥m+1± (k2
∥m

−k2
∥m+1

)2−4ϵ2k2
∥m

k2
∥m+1

2(1−ϵ2)

DPG-Frühjahrstagung , Greifswald, April 2009 9

toroidal Alfvén eigenmodes (TAE)

analogous to electron bands in solid state physics

location of gap: set k//m+k//m+1=0 → qTAE= (m+1/2)/n 
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ASDEX Upgrade
Ergebnisse

Globale Struktur der TAE Moden
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toroidal Alfvén eigenmodes (TAE)

global mode structure in the gap

weakly damped
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symmetry-breaking induces more gaps

ASDEX Upgrade
Comparison theory-experiment

TAEs at ASDEX-Upgrade (#21007, Mirnov coils)
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Btor

density

←
missing 
drive 
(ICRF)

• measured routinely by magnetic pick-up coils (mode number detection), soft-X-ray cameras
(displacement fluctuations), fast ion loss detector (resonance condition)

• B-field ramp, drop in density: Alfvén scaling of TAEs (B/
√

µ0min)

• observed mode numbers (n = 3 ....7) match orbit widths of ICRH-ions

IPP Colloquium, Garching, January 2009 32
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symmetry-breaking induces more gaps:
stellarator

HAE: helicity-induced AEs
MAE: mirror induced AEs

[D.Spong,2003]
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‘Reversed shear’ Alfvén Eigenmodes (RSAE)
Reversed-Shear-Scenarios

Alfvén Cascade-Modes
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frequency, driven by energetic ions;
existence depends also on pressure, pressure gradient, density, density gradient;
[Berk, Breizman, Sharapov, Fu, Konovalov 2001-2006]

IPP Colloquium, Garching, January 2009 37
[Berk, Breizman, Fu, Sharapov, Konovalov, Lauber 2000-2006]
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off axis peaked current profile: 
“advanced tokamaks” - steady state

⇒ q-profile has minimum

⇒ region without continuum damping



Advanced Courses EP, 2020

further gaps due to geodesic curvature and coupling 
between Alfvén and acoustic waves (see below) 

 Σm( ω/vA)2- k2||m = β *  F( ω 2/c2s- k2||m)
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gaps scale with plasma beta:

⇒ beta induced Alfvén 
eigenmode : BAE

⇒ beta induced Alfvén- Acoustic 

eigenmode : BAAE
strongly modified in kinetic 

description! (ω~ωt,b)

[Heidbrink 1992, Zonca 1996,Gorelenkov 2006, Lauber 2013, Heidbrink 2020]

[DIIID case, 
Lauber, 2012] MHD BAAE cannot be excited - strongly damped;

drift-Alfvén-type instabilities at rational surfaces - 

can be excited by thermal gradients
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Resonant drive:

Landau damping:

[B. Heidbrink, 2007]

resonant drive:
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Welle-Teilchen Resonanzen
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•sources and creation of a super-thermal particle population
•particle motion in 2D and 3D systems, effect of static 
perturbations
•linear physics of resonant phenomena:

1. Experimental evidence
2. Alfvén waves, models 
3. Energetic particle modes
4. n=1 modes

•non-linear phenomena and EP transport
1.perturbative regime
2.adiabatic regime
3.non-adiabatic regime



Overview: plasma models(I)

Vlasov, Fokker-Planck Equation 

➞

➞

Kinetic Wave
 Equations 

Gyrokinetic Theory

➞
➞

➞

Kinetic Description

MHD

Fluid Equations

perturbative

Kinetic MHD Models
 

➞ ➞

Dielectric Tensor

Gyrokinetic MHD

Self Consistent

➞
Linearization

Equivalent

Limit

Reduce from 6-D to 5-D
Building Moments

by Integration
over Velocity Space

➞
non-perturbative

CAS3D-K ,NOVA-K
       CASTOR-K

LIGKA, KIN2DEM
GYGLES

TORIC,PENN,LEMAN

[Cheng,1991]

[Qin, 1999]

[Littlejohn, Hahm,Brizard]

[Stix, Brambilla]
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the gyrokinetic model  

                               gyro frequency  >>   wave frequency

⇒decouple/average out gyromotion from the rest of the particle’s motion

coordinate transform in two small parameters:

1. ρi / LB  ⇒ guiding centre coordinates

2. separation of perturbed and equilibrium potentials/
fields  ⇒ “drifting rings”

⇒consistent model, energy conservation

CHAPTER 3. FROM LINEAR GYROKINETIC THEORY TO LINEAR
MAGNETO-HYDRODYNAMICS

attempt to provide some insight in the physical meaning involved when dealing with stability
issues. Next, we explain the plasma kinetic model used in this work, the so-called gyroki-
netic model, expanded here in the two coordinate system of interest to us, the action-angle
variables and the non-canonical guiding-center variables introduced in the previous chapter.
Finally, we combine the two models to display a gyrokinetic energy relation, and show how
the MHD limit, leading to the traditional MHD energy equation, can be recovered.

3.1 Variational dispersion relation and instabilities

3.1.1 Variational formalism and energylike relation

For the instabilities of interest in this thesis, the electromagnetic fields can be described
using the low frequency Maxwell equations

⌅ · E = � ⇥

�0
(3.1)

⌅⇥B = µ0j (3.2)
⌅ · B = 0 (3.3)

⌅⇥E = �⌅B
⌅t

(3.4)

where the displacement current µ0�0⌅tE is neglected. The charged particles e�ects come into
⇥(x, t) =

⇤
s ⇥s(x, t) and j(x, t) =

⇤
s js(x, t) which are the total charge density and total

current density, summed over all the species s. From now on, the e�ects or properties of
each species will be specified whenever there may be an ambiguity, with the convention that
s refers to any species, s = i when the focus is on the thermal main ion, s = e when it is on
electrons and s = h for the hot species.

Equivalently, it is possible to use the electric and magnetic vector potentials

E = �⌅⇤� ⌅A
⌅t

(3.5)

B = ⌅⇥A (3.6)

and a variational principle to solve Poisson and Ampère Eqs. 3.1, 3.2. Under the assumption
that the studied domain is surrounded by an ideal conductor (such that there is no surface
term in Eq. 3.7) and similarly as for the hamiltonian formulation of the particles motion, it
is easy to see that Poisson and Ampère equations are equivalent to the extremalization of
the electromagnetic action

⌅
dt L under variations of the potentials A and ⇤ (for fixed ⇥ and

j), where L is the electromagnetic Lagrangian defined by

L(A, ⇤) =
⇧

d3x
�

�0E2

2
� B2

2µ0

⇥
+

⇧
d3x (j · A� ⇥⇤) . (3.7)

L clearly contains information on the fields energies ⇤ E2 and B2, whereas the second term
of Eq. 3.7 can be interpreted as the interaction of the fields with the particles. If the term
⇤ E2 representing the electric field energy is neglected, extremalization by ⇤ returns ⇥ = 0,
that is electroneutrality. Since only collective perturbations are of interest to us (that is
with wavelengths longer than the Debye length), the assumption of electroneutrality is made
in the following.

For the study of electroneutral coherent perturbations, ie. for perturbed quantities of the
form X = X�e�i�t + c.c., a simpler variational form is the extremalization of the reduced

42

ASDEX Upgrade
Modell

Gyrokinetische Theorie

Startpunkt: allgemeines Maxwell-Vlasov System
Führungszentrum-Transformation:
Trennung der Gyrationsbewegung von der übrigen Teilchenbewe-
gung (Drift) zu trennen:
möglich wegen unterschiedlicher Zeitskalen von Larmorfrequenz
und MHD-Moden-Frequenz:
�Drift-kinetische Beschreibung

Gyro-Zentrum Transformation:
Bei vergleichbarer räumlicher Ausdehnung von Mode und Gyroradius
�Teilchen werden durch driftenden, geladenen Ring repräsentiert

B
→

→

B
→

→

→

→

Juli 2006 9

k⊥

 ρi

[Littlejohn, Hahm, Brizard,Qin
1983-2006]



with d3v̄ = (B/m) dξ̄dµ̄dŪ . We now use the relations

eϱ·∇δ(X̄− x) = δ(X̄ − x)e−ϱ·∇

e−ϱ·∇(h · g) = h(e−ϱ·∇ − 1)g + ge−ϱ·∇h

and carry out the integration over X̄. Employing the definition for the Bessel function of

0-th order (see figure 7):

1

2π

∫
dξ̄e±ϱ·∇ =

1

2π

∫
dξ̄e±ϱ∇⊥ cos ξ̄ = J0

(ϱ∇⊥

i

)
, (69)
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Figure 7: gyroangle averaging: eϱk cos ξ is replaced by ξ-independent Bessel function

we partially perform the ξ̄- integration to result in:

na1(x) =
∫

d2vJ0f +
∫

d2v̄
ea

B

∂Fa0(x, t)

∂µ̄
(1 − J2

0 )
[
φ(x) − 1

c
ŪA∥(x)

]

+
∫

d3v̄(eϱ·∇ − ⟨eϱ·∇⟩)
[
φ(x) − 1

c
ŪA∥(x)

]
(e−ϱ·∇ − 1)

ea

B

∂Fa0(x, t)

∂µ̄

with d2v = 2π(B/m)dµ̄dŪ . For the second line the result of the ξ̄- integration can not be

written in a closed form. But if we now expand all terms dependent on ϱ∇⊥ ∼ ϱk ∼ up

to forth order using the expansion formulae given in Appendix 8.7 and take into account

that integrals of the form ∫
Ū

∂Fa0(x̄, t)

∂µ̄
dŪ

are small compared to the other contributions to the perturbed density (since they rep-

resent the anisotropy of the equilibrium distribution function; if Fa0(x̄, t) is Maxwellian,

they are exactly 0), we finally derive [1]:

0 =
∑

a

[ ∫
d2vJ0f +

ea

ma
∇⊥

na0

B2
∇⊥φ(x) +

3eav2
th,ana0

8maΩ4
a

∇4
⊥φ(x)

]
(70)
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gyro-angle averaging:

ASDEX UpgradeNeue Physik an ITER

0 =
X

a

ea

h Z
J0fd3v +

Z
ea�

Ta
F0(J

2
0 � 1)

i

Zum ersten mal in ITER:
thermonukleare Selbstheizung des Plasmas

thermischer Hintergrund: 20 keV
schnelle He-Kerne:          3.5MeV

geben ihre Energie durch Coulomb-
stöße an den Hintergrund ab und
halten ihn so auf der für die Fusion
benötigten Temperatur

Universität Greifswald, Juli 2009 1

quasi-neutrality: polarisation



combine Ampère’s law with 0-th order 
moment of GK equation to arrive at:
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linear model equations containing crucial effects for 
self-consistent description of EP driven modes:

reduced MHD as limit

propagator →resonance

free energy

‘pressure’ tensor - curvature drift coupling

shear Alfven law

[LIGKA model]



in toroidal geometry: coupling via curvature drifts:

Kinetic Alfvén Eigenmodes at ASDEX Upgrade 2

1. Introduction

Although beta-induced Alfvén eigenmodes (BAEs) [1, 2] and geodesic acoustic modes

(GAMs) [3] are closely related and are in fact in the long wave-length limit described

by the same dispersion relation [5, 6, 7, 8], their experimental manifestation and

their consequences for tokamak research are quite di⇥erent. Whereas BAEs are

electromagnetic, n ⇥= 0 perturbations, driven by energetic particles, usually located

in the plasma core at roughly 30% to 50% of the toroidal Alfvén eigenmode (TAE)

frequency, the GAMs are n = 0, mostly electrostatic modes closely related to the zonal

flow and turbulence physics especially at the plasma edge.

Their kinetic dispersion relation has been first derived by Zonca [18] in the ballooning

representation. Recently, several alternative derivations (e.g. by Nguyen via Fourier

expansion, high-q limit [7] and by Elfimov via dielectric tensor formulation [9]) were

reported. Furthermore, also elongation e⇥ects for the GAM dispersion relation were

analytically and numerically investigated [10, 11].

The relevant dispersion relation was re-derived [14] for the gyrokinetic model [22]

underlying the eigenvalue code LIGKA [13]. This derivation is also based on a Fourier

expansion in the poloidal angle but keeps the full resonances, i.e. is valid for low q.

Keeping the m ± 1-sidebands, retaining the geodesic curvature and the sound wave

coupling by an appropriate approximation of the propagator integrals, leads to:

⇤2
�
1� ⇤⇥p

⇤

⇥
� k2

⇤⇤
2
AR2

0 = 2
v2

thi

R2
0

⇤

�
⇧
H(xm�1) + H(xm+1)

⌃
+

⇥
⇧Nm(xm�1)Nm�1(xm�1)

Dm�1(xm�1)
+

Nm(xm+1)Nm+1(xm+1)

Dm+1(xm+1)

⌃⌅

(1)

with xm = ⇥
kk,mvth

, v2
thi = 2Ti/mi, ⇤p⇥ = ⇤⇥n + ⇤⇥T = Ti/(eB)k�(⇤n/n)(1 + �) with

� = ⌅T
T /⌅n

n , D(xm) =
⇧
1+ D̃(xe,m)

⌃
+ ⇥

⇧
1+ D̃(xi,m)

⌃
, Nm(xm) = Ñm(xi,m)� Ñm(xe,m),

D̃(x) = (1 � ⇥⇤
⇥ )xZ(x) � ⇥⇤

⇥ �
�
x2 + xZ(x)(x2 � 1

2)
⇥
, 2Ñm(x) = (1 � ⇥m

⇤
⇥ )

⇧
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xZ(x)(x2 + 1
2)

⌃
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⇤
⇥ �

⇧
x4 + x2

2 ) + xZ(x)(1
4 + x4)

⌃
, H(xm) = H̃(xm,i) + ⇥H̃(xm,e),

H̃(xm) = 1
2

⇧
(1 � ⇥⇤

⇥ )F̃ (xm) � � ⇥⇤

⇥ G̃(xm)
⌃
, 2F̃ (x) = xZ(x)(1

2 + x2 + x4) + 3x2

2 + x4,

2G̃(x) = xZ(x)(3
4 + x2 + x4

2 + x6) + 2x2 + x4 + x6 and Z(x) the plasma dispersion

function. Although obtained in a completely di⇥erent way, eqn. (1) is very similar

(same coe⇤cients) to the ballooning formulation result. The asymmetry in the ⇤⇥ terms

(omitted in the first derivation based on LIGKA’s set of equation in [14]) was pointed

out by Zonca [20, 21].

The aim of this paper is the following: in the first part, after describing the experimental

parameters, the validity of including only circulating thermal ions with vanishing

perpendicular energy, i.e. � = µB0/E = 0 is investigated. All analytical models except

a very recent work including deeply trapped particles [12], rely on this simplification.

Due to the one-to-one correspondence of the analytical and the numerical coe⇤cients in

a linear eigenvalue code, the correctness of the numerics and the validity of the analytical

approximations can be checked.

combine with QN (Φ-ψ)  ⇒ dispersion relation (no fast ions):

Σm

Here, H is the Heaviside step function, so that H vanishes for trapped particles and equals

unity for circulating particles. ⇧ equals 1 for co-passing and �1 for counter-apassing

particles.

The non-adiabatic density response for circluatling particles of the species a can be written

as:
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(18)

Here,
1

b(r, ⇥)
=

B(r, ⇥)

B0
=

1

1 + � cos(⇥)

For obtaining the dispersion relation and for constructing the weak form, one has to inte-

grate over the whole plasma volume. This operation requires a trivial toroidal integration,

a radial integration (which is carried out numerically by introducing a finite element for-

mulation) and a poloidal angle intergration that is carried out analytically, leading to the

following expression for the non-adiabatic density response:
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with
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Here, b(r, ⇥) vanishes since J� = 1 + � cos(⇥) and therefore

J�

b(r, ⇥)
= 1

The gyrokinetic moment equation (or parallel current equation) completes the system:
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where the adiabatic split o⇥ tranforms the right hand side to
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well-known dispersion relation [Zonca 1996,2009, Lauber 2009]

(current equation)

=local solution of linearised GK set of equations
[LIGKA model]
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NAE,EAE,TAE

other gaps induced by geometry...
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global solutions: local and non-local damping

continuum damping: 
mode conversion to 
kinetic Alfven wave

Kinetic Alfvén waves [Hasegawa, Chen 1974]

reduced kinetic limit: mode conversion to the kinetic Alfvén wave
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Singularity of the MHD operator is resolved by fourth order terms: electric field
strongly damped for short wavelengths

IPP Colloquium, Garching, January 2009 10

Kinetic effects (I)

Mode conversion KAW-TAE: continuum damping

Singularity of the MHD operator is resolved by fourth order terms
Inwards propagating kinetic Alfvén wave is excited [Jaun 1998]

IPP Colloquium, Garching, January 2009 18

[Lauber,2005]
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NAE,EAE,TAE

other gaps induced by geometry...
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radiative damping: 
kinetic Alfven waves 
‘tunnels’ into TAE

radiative damping [Mett, Mahajan, 1992]

Kinetic Alfvén Waves can ’tunnel’ into the TAE
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[Lauber,2006]

[Mett, Mahajan, 1992]

local and non-local damping



ASDEX UpgradeEigenmoden einer Stradivari

Stradivari frequency response [Jansons,2004]

[Stradivari Society]

Universität Greifswald, Juli 2009 7



ASDEX UpgradeEigenmoden eines Tokamaks
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eigenmodes in a Tokamak, low toroidal/poloidal mode number

frequency response of  ASDEX Upgrade (using linear GK model)

shear Alfven
waves
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regime (BAE)

drift and 
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Kinetic effects (II)

Scan throughout the gap region

in order to find all the modes in and around a gap: drive perturbation at plama boundary, sweep frequency
and measure plasma response
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⇥ =
4ms⇤i
rm�̂3/2

�
3

4
+

Te

Ti
; with �̂3/2 = 5rm/2R (34)

that describes parallel electric field effects due to finite Larmor radii, the radiative
damping [121, 128] within the gap can become significant. This kind of damping is
also called ’tunnelling’: although there is no direct intersection with the shear Alfvén
continuum, the kinetic Alfvén wave structure is present in the TAE mode. Fig.9 shows
this tunnelling and the dependence of the damping on the background ion Larmor ra-
dius [112].
Another type of TAE, called ’kinetic TAE’ (KTAE) [121] is found on top of the gap:
KTAEs are generated by two KAWs that propagate towards each other and form a
standing wave between the two continuum intersections at a given frequency. For
increasing frequency the two intersections layers are moving away from each other,
allowing for more and more maxima in between the continuum intersection points (see
fig. 10). The first 4 KTAEs with ‘quantum numbers’ p = 0, 1, 2, 3 are shown in this
figure. Recently, it was shown analytically that not surprisingly the radiative damping
is very small for the odd TAE, i.e. the p = 0 KTAE [129].

Figure 10: The first four kinetic TAEs (KTAEs) at the upper boundary of the TAE gap [112].

5.2. Reversed shear Alfvén eigenmodes
Non-monotonic q-profiles can give rise to a further type of AE: a local minimum

in the safety factor causes a local maximum in the SAW continuum (see fig. 11). On
top of this maximum, no continuum damping is present and therefore a global AE,
called Alfvén Cascade mode or reversed shear Alfvén eigenmode (RSAE) with one

30

Kinetic TAEs

two KAWs propagating in opposite directions form a 
standing wave: KTAE 
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nonlinear models and codes

relative to ORB5 (tokamak): similar numerical techniques

EUTERPE:

relative to HAGIS/LIGKA (tokamak): similar model
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Alfvén eigenmodes in stellarators: critical beta
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LIGKA/HAGIS model

similar to CKA-EUTERPE, in 2D

difference: non-perturbative mode structures with E// ≠0
new: IMAS capabilities;  various local and global models consistently 
embedded for time-dependent scenario analysis
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•sources and creation of a super-thermal particle population
•particle motion in 2D and 3D systems, effect of static 
perturbations
•linear physics of resonant phenomena:

1. Experimental evidence
2. Alfvén waves, models, resonant excitation, codes
3. Energetic particle modes
4. n=1 modes

•non-linear phenomena and EP transport
1.perturbative regime
2.adiabatic regime
3.non-adiabatic regime
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Continuum modes

Energetic particle modes

• for strong drive (steep gradients), modes in the Alfvén
continuum can be driven

• mode frequency purely determined by energetic particles:
ω ∼ ωt,fast

• both gap and energetic particle continuum modes can be
described with generalised fishbone dispersion relation
[Chen, Zonca 2006]

• often bursty behaviour (strong damping!)

• often strongly ’chirping’: mode follows fast evolution of
gradient in real and phase space ⇒ no time to form
eigenmode by radial localisation

• in present day machines usually seen due to strong NBI
heating (abrupt large-amplitude event: ALE)

• linear EPM threshold can be determined [A. Koenies, A.
Mishchenko] - non-linear behaviour very complex [Vlad,
Zonca,Briguglio 2006]

[Briguglio 2007]

IPP Colloquium, Garching, January 2009 30
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5.4. Mode drive and energetic particle modes (EPMs)
So far, the contribution of the EPs was neglected and only the properties of the

(mostly stable) plasma eigenmodes were discussed. Now, a third species is added
straightforwardly to the QN and GKM equation. In the case of EPs however, three im-
portant points have to be considered: firstly, the density of the EPs is usually very small
- typically two orders of magnitude - compared to the background density. Therefore,
EP contributions can be neglected in the QN equation. Secondly, due to their high en-
ergy, EPs contribute substantially to the total pressure. Even in present day experiments
the EP pressure can be comparable to the background pressure. Finally, in contrast to
the Maxwellian background, the EP distribution function is not necessarily isotropic,
leading to a difference between parallel and perpendicular EP pressure.
Numerically, the solution procedures remain the same as described in chapter 4. How-
ever, depending on the mode numbers under consideration, it has to be checked if
expansions in k⇥⌅EP can be made or if the full Bessel functions have to be evaluated.
Also the full drift orbits have to be kept since the strongest drive can be found for modes
that satisfy k�⌅EP ⇥ 1 [150]. This fact becomes obvious, if analyses the pressure terms
due to the EP in eqn. (14) and below: the magnetic curvature drifts play a crucial role
and therefore the energy exchange between mode and particles becomes efficient if the
characteristic energetic ion drift orbit width and the perpendicular wavelength of the
mode k⇥ are comparable. Whereas for present day tokamaks this condition favours
typically modes with n = 2...7 (depending on the heating scheme), it is expected that
for ITER (�-particle drive, higher magnetic field) modes with n = 5...15 will domi-
nate.
Analytically, via asymptotic matching of the inertial (local) layer to the ideal MHD
region a general fishbone-like dispersion relation can be derived [151, 152, 67]:

� i�+ ⇥Wcore + ⇥Whot = 0, (35)

where � is the generalised inertia term given by eqn. 20 and ⇥Wcore and ⇥Whot the
potential energy contribution due to the plasma background and the hot particles, re-
spectively. Above equation is called ’fishbone-like’ since for �2 = ⇤(⇤ � ⇤�

p,i)/⇤
2
A

the dispersion relation for the n = 1,m = 1 fishbone instability is recovered [151].
For Re(⇥) < 0 one obtains modes in the gaps, whereas for Re(⇥) > 0 modes in
the continuum are found that are called energetic particle modes (EPMs). For the latter
modes, the EP drive has to overcome the continuum damping. They are no eigenmodes
of the background plasma but rather ’forced oscillations’ and the mode frequency is set
by the characteristic frequency of the EPs rather than the background plasma. It should
be noted that all terms of eqn. 35 can be of the same order and therefore eqn. 35 is
non-perturbative.
Inserting the TAE-frequency and the corresponding qTAE (eqn. 23) in the resonance
condition, i.e. in the denominator of eqn. 13, leads to a condition for the parallel
velocity of the fast particles

v⇤ =
vA

|2k � 1| = vA, vA/3, ... (36)
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1. Introduction

Although beta-induced Alfvén eigenmodes (BAEs) [1, 2] and geodesic acoustic modes

(GAMs) [3] are closely related and are in fact in the long wave-length limit described

by the same dispersion relation [5, 6, 7, 8], their experimental manifestation and

their consequences for tokamak research are quite di⇥erent. Whereas BAEs are

electromagnetic, n ⇥= 0 perturbations, driven by energetic particles, usually located

in the plasma core at roughly 30% to 50% of the toroidal Alfvén eigenmode (TAE)

frequency, the GAMs are n = 0, mostly electrostatic modes closely related to the zonal

flow and turbulence physics especially at the plasma edge.

Their kinetic dispersion relation has been first derived by Zonca [18] in the ballooning

representation. Recently, several alternative derivations (e.g. by Nguyen via Fourier

expansion, high-q limit [7] and by Elfimov via dielectric tensor formulation [9]) were

reported. Furthermore, also elongation e⇥ects for the GAM dispersion relation were

analytically and numerically investigated [10, 11].

The relevant dispersion relation was re-derived [14] for the gyrokinetic model [22]

underlying the eigenvalue code LIGKA [13]. This derivation is also based on a Fourier

expansion in the poloidal angle but keeps the full resonances, i.e. is valid for low q.

Keeping the m ± 1-sidebands, retaining the geodesic curvature and the sound wave

coupling by an appropriate approximation of the propagator integrals, leads to:

⇤2
�
1� ⇤⇥p

⇤

⇥
� k2

⇤⇤
2
AR2

0 = 2
v2

thi

R2
0

⇤

�
⇧
H(xm�1) + H(xm+1)

⌃
+

⇥
⇧Nm(xm�1)Nm�1(xm�1)

Dm�1(xm�1)
+

Nm(xm+1)Nm+1(xm+1)

Dm+1(xm+1)

⌃⌅

(1)

with xm = ⇥
kk,mvth

, v2
thi = 2Ti/mi, ⇤p⇥ = ⇤⇥n + ⇤⇥T = Ti/(eB)k�(⇤n/n)(1 + �) with

� = ⌅T
T /⌅n

n , D(xm) =
⇧
1+ D̃(xe,m)

⌃
+ ⇥

⇧
1+ D̃(xi,m)

⌃
, Nm(xm) = Ñm(xi,m)� Ñm(xe,m),

D̃(x) = (1 � ⇥⇤
⇥ )xZ(x) � ⇥⇤

⇥ �
�
x2 + xZ(x)(x2 � 1

2)
⇥
, 2Ñm(x) = (1 � ⇥m

⇤
⇥ )

⇧
x2 +

xZ(x)(x2 + 1
2)

⌃
� ⇥m

⇤
⇥ �

⇧
x4 + x2

2 ) + xZ(x)(1
4 + x4)

⌃
, H(xm) = H̃(xm,i) + ⇥H̃(xm,e),

H̃(xm) = 1
2

⇧
(1 � ⇥⇤

⇥ )F̃ (xm) � � ⇥⇤

⇥ G̃(xm)
⌃
, 2F̃ (x) = xZ(x)(1

2 + x2 + x4) + 3x2

2 + x4,

2G̃(x) = xZ(x)(3
4 + x2 + x4

2 + x6) + 2x2 + x4 + x6 and Z(x) the plasma dispersion

function. Although obtained in a completely di⇥erent way, eqn. (1) is very similar

(same coe⇤cients) to the ballooning formulation result. The asymmetry in the ⇤⇥ terms

(omitted in the first derivation based on LIGKA’s set of equation in [14]) was pointed

out by Zonca [20, 21].

The aim of this paper is the following: in the first part, after describing the experimental

parameters, the validity of including only circulating thermal ions with vanishing

perpendicular energy, i.e. � = µB0/E = 0 is investigated. All analytical models except

a very recent work including deeply trapped particles [12], rely on this simplification.

Due to the one-to-one correspondence of the analytical and the numerical coe⇤cients in

a linear eigenvalue code, the correctness of the numerics and the validity of the analytical

approximations can be checked.

Σm
Λ2

following form [34]:

⇥Whot ⇤
⇥

dEdµdP�d⇤d�
⇤�

k=�⇤

⌦F

⌦E

(⌥ � ⌥̄⇥)|Lk|2

⌥ � ⌥prec � (nq � k)⌥t,b
(4)

with ⌥̄⇥ = ⇤F
⇤P�

/⇤F
⇤E .This expression constitutes a phase space integral over all possible

fast particle trajectories and all possible resonances of a mode of frequency ⌥ with
the transit or bounce frequency ⌥t,b (and its harmonics, counted by the index k) and
with the precession drift frequency ⌥prec. The real space integration variables are the
poloidal angle ⇤, the toroidal angle � and the generalised toroidal momentum P� =
Ze⌃ + ZeR/�civ⌅B�. This expression for P� can be derived from the conservation
of angular momentum in a axisymmetric system, and due to its simple dependence
on the poloidal flux ⌃ it can be used here as a radial variable. The velocity phase
space is represented by the variables energy E and the adiabatically invariant magnetic
momentum µ. Lk are the Fourier coefficients of the linearised perturbed Lagrangian

L̃ = ZeÃ · Ṙ� Ze⇧̃� µB̃

for the unperturbed particle motion in the potential of the wave characterised by Ã or
B̃ (electromagnetic) and ⇧̃ (electrostatic). At this point it becomes clear what ‘hybrid’
actually means: the wave perturbations are precalculated within the MHD model and
then used for integrating the kinetic particle equations that describe the interaction with
the wave. Therefore, the complex or ’resonant’ part of ⇥Whot describes the irreversible
energy transfer from particles to waves or vice versa depending on the gradients of the
EPs’ distribution function ⇤Ff

⇤E and ⇤Ff

⇤P⇥
. Mathematically, the complex contributions

arise due to the velocity phase space integration over the resonances (Landau pole
integration). The real or ‘non-resonant’ part leads to a small frequency shift and is
usually neglected for perturbative problems such as Alfvén eigenmodes. However, in
other cases such as EPMs and sawtooth stabilisation it plays an important role.
The presence of ⇥Whot destroys the self-adjoint structure of the ideal MHD operator.
As a consequence, the system has complex eigenvalues, i.e. purely oscillating waves
become damped or unstable. If it can be assumed that ⇥Whot is small compared to
⇥WMHD, equation (3) can be iterated: the zeroth order eigenfrequency and the mode
structure are obtained from the solution of the ideal MHD equations, and the first order
correction for the eigenvalue is determined via:

(⌥r + i�)2Wkin = ⇥WMHD + ⇥Whot ⌅ �

⌥r
=

Im(⇥Whot)
2⌥2

rWkin

This expression gives an upper limit of the instabilities’ growth rate since it does not
include background damping and the EPs’ influence on the eigenfunction.
At present, there are a number of numerical codes that are essentially are based on this
hybrid approach: CASTOR-K [35] and NOVA-K [36], and CAS3D-K [37] in a more
general non-axisymmetric geometry.
The basic idea of this hybrid approach, i.e. to solve the kinetic equation for a given
perturbation and close the equations by adding an EP pressure tensor, can also be used

8

the fishbone dispersion relation 
[Chen, 1984]
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Derivation of the fishbone dispersion relation

✷ This derivation is a summary of that given by Chen et al 84, where
it is shown that, for a radial displacement ξ = e−iω0t+iζ−iθξ0 =
−(c/ω0B0)e−iω0t+iζ−iθ(δφ0(r)/r)

i|s|
ω0

ωA
= δŴ = δŴf + δŴk ωA = vA/(q(rs)R0) = vA/R0

✷ Generalization of this dispersion relation is discussed in Lecture 4 of Spring
2009 Lecture Notes

i|s|Λξ = δŴ ξ =
(

δŴf + δŴk

)

ξ

✷ Simplest expression of δŴf is given by Bussac et al 75

δŴf = 3π∆q0

(

13/144 − β2
ps

) (

r2
s/R

2
0

)

with βps = −(R0/r2
s)

2
∫ rs

0 r2(dβ/dr)dr, ∆q0 = 1−q(r = 0) and β = 8πP/B2
0

F. Zonca

core
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Re[Λ2] <0 :                    gap modes            
Re[Λ2] >0 : EP modes in continuum

the fishbone dispersion relation 
[Chen, 1984]

the combined effect of  δWcore and Re[δWhot] is to 
‘move’ the mode away from the local continuum solution 
and determines if the mode can exist -> ‘Alfven zoo’

for EPMs, the mode frequency is set by the EPs 
the drive has to overcome continuum damping i.e. 
Im(δWhot)> Re(Λ)

theory for linear onset well developed [Zonca PoP, 2005]

5.4. Mode drive and energetic particle modes (EPMs)
So far, the contribution of the EPs was neglected and only the properties of the

(mostly stable) plasma eigenmodes were discussed. Now, a third species is added
straightforwardly to the QN and GKM equation. In the case of EPs however, three im-
portant points have to be considered: firstly, the density of the EPs is usually very small
- typically two orders of magnitude - compared to the background density. Therefore,
EP contributions can be neglected in the QN equation. Secondly, due to their high en-
ergy, EPs contribute substantially to the total pressure. Even in present day experiments
the EP pressure can be comparable to the background pressure. Finally, in contrast to
the Maxwellian background, the EP distribution function is not necessarily isotropic,
leading to a difference between parallel and perpendicular EP pressure.
Numerically, the solution procedures remain the same as described in chapter 4. How-
ever, depending on the mode numbers under consideration, it has to be checked if
expansions in k⇥⌅EP can be made or if the full Bessel functions have to be evaluated.
Also the full drift orbits have to be kept since the strongest drive can be found for modes
that satisfy k�⌅EP ⇥ 1 [150]. This fact becomes obvious, if analyses the pressure terms
due to the EP in eqn. (14) and below: the magnetic curvature drifts play a crucial role
and therefore the energy exchange between mode and particles becomes efficient if the
characteristic energetic ion drift orbit width and the perpendicular wavelength of the
mode k⇥ are comparable. Whereas for present day tokamaks this condition favours
typically modes with n = 2...7 (depending on the heating scheme), it is expected that
for ITER (�-particle drive, higher magnetic field) modes with n = 5...15 will domi-
nate.
Analytically, via asymptotic matching of the inertial (local) layer to the ideal MHD
region a general fishbone-like dispersion relation can be derived [151, 152, 67]:

� i�+ ⇥Wcore + ⇥Whot = 0, (35)

where � is the generalised inertia term given by eqn. 20 and ⇥Wcore and ⇥Whot the
potential energy contribution due to the plasma background and the hot particles, re-
spectively. Above equation is called ’fishbone-like’ since for �2 = ⇤(⇤ � ⇤�

p,i)/⇤
2
A

the dispersion relation for the n = 1,m = 1 fishbone instability is recovered [151].
For Re(⇥) < 0 one obtains modes in the gaps, whereas for Re(⇥) > 0 modes in
the continuum are found that are called energetic particle modes (EPMs). For the latter
modes, the EP drive has to overcome the continuum damping. They are no eigenmodes
of the background plasma but rather ’forced oscillations’ and the mode frequency is set
by the characteristic frequency of the EPs rather than the background plasma. It should
be noted that all terms of eqn. 35 can be of the same order and therefore eqn. 35 is
non-perturbative.
Inserting the TAE-frequency and the corresponding qTAE (eqn. 23) in the resonance
condition, i.e. in the denominator of eqn. 13, leads to a condition for the parallel
velocity of the fast particles

v⇤ =
vA

|2k � 1| = vA, vA/3, ... (36)
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•sources and creation of a super-thermal particle population
•particle motion in 2D and 3D systems, effect of static 
perturbations
•linear physics of resonant phenomena:

1. Experimental evidence
2. Alfvén waves 
3. Energetic particle modes
4. n=1 modes

•non-linear phenomena and EP transport
1.perturbative regime
2.adiabatic regime
3.non-adiabatic regime



Advanced Courses EP, 2020

the fishbone cycleIFTS Intensive Course on Advanced Plasma Physics-Spring 2010 Lecture 4 – 9

Fishbone burst observation

PDX: K. McGuire et al, Phys. Rev. Lett.
50, 891 (1983).

JET: F. Nabais et al, Phys. Plasmas
12, 102509 (2005).

F. Zonca

[JET, F. Nabais, 2005]
[PDX: McGuire, 1983]
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•reminder: MHD stability of n=1,m=1 ideal kink mode 
is determined by higher order O(ε4)

•therefore, small, non-ideal terms like the EP pressure 
can compete

•both situations are possible: stabilisation and 
destabilisation

•stabilisation: the conservation of the third adiabatic 
invariant

CHAPTER 2. FUNDAMENTALS

Action-angle variables

In the previous section, we explained that a Hamiltonian description of particle motion could
be powerful, and lead to simple insightful motion equations when expressed in canonical
variables. However, when going from the particle variables (x,p) to the guiding-center
variables (X, µ,E, ⇥), canonicity is lost. Fortunately, in the tokamak geometry, it is possible
to display a canonical system of variables which is consistent with the decoupling
of the gyromotion and guiding-center motion. Moreover, if follows from the tokamak
periodicity in ⌅ and ⌥ that the particle motion is quasiperiodic at equilibrium, and the chosen
system of coordinates can be taken to be a system of action-angle variables (�,J). Action-
angle variables are a particular type of canonical variables appropriate for periodic systems
where the “spatial” variables are angles and the momenta (or actions) are motion invariants,
that is,

J̇ = �
↵H(0)

↵�
= 0, �̇ =

↵H(0)

↵J
= �(0)(J) (2.29)

Hence, this description does not only provide canonicity but also physical motion invariants,
to which µ belongs. Moreover, the characteristic eigenfrequencies of the periodic particle
motion can be directly derived, and the question of the time decoupling of the di⌅erent
periodic motion directly assessed. In particular, for the understanding of the resonances
between waves and energetic particles, it is necessary to know these eigenfrequencies.

A derivation of the set of action-angle variables used in this thesis is provided in Ap-
pendix B.1, which closely follows Refs. [13, 14, 15]. The motion is found to be divided into
three angular periodic motions

� = (�1, �2, �3) = � t = �0 + �
⌥ �

0

d⌅

⌅̇
(2.30)

(where �0 stands for the initial phase-space position) with invariant eigenfrequencies

⇤1 = ⇤b
⇧

d�
2⇥

1
�̇

⇥̇ ⌅ ⇤b
⇧

d�
2⇥

1
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eB(0)

m

⇤2 ⇤ ⇤b = 2⌃
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1
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⌅�1
⌅ 2⌃
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1

b(0)·⇧� v�

⌅�1
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⇧

d�
2⇥

1
�̇

⌥̇ ⌅ ⇤b
⇧

d�
2⇥

1
�̇

vD ·
�
�q⇤(⇥̄)⌅⇧⇥ +⇧(⌥� q(⇥̄)⌅)

⇥

+ ⇤passing q(⇥̄)⇤b

(2.31)

where the first angular motion is found to be related to the gyromotion ⇥, the second to
the poloidal motion described by ⌅ also called the bounce motion, and the third, called
precessional drift, to the particle drift in the toroidal direction. The three angular motions
can be clearly identified in the 3-D picture of Fig. 2.2. The bounce integral (⇤b/2⌃)

⇧
(d⌅/⌅̇)...,

present in the eigenfrequencies expression, allows to remove the fields ⌅-dependence. For
passing particles,

⇧
=

⇧ 2⇥
0 , whereas for trapped particles oscillating between the ⌅-angles

[�⌅0, ⌅0],
⇧

= (1/2)
⌃ ��0

��0
(the full closed banana) ⌅

⌃ �0

��0
.

The corresponding invariant momenta are

J1 = m
e µ

J2 =
⇧

d�
2⇥

B�
B(0)

mv⌅ + e
⇧

d�
2⇥� ⌅

⇧
d�
2⇥

r2

qR0
mv⌅ + ⇤passing e�(J3)

J3 = e⇥ + I(�)
B(0)

mv⌅ ⌅ e⇥ + Rmv⌅

(2.32)
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corresponds to conservation of poloidal flux through 
the area described by precessional drift motion in 
toroidal direction

n=1 fishbone
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n=1 fishbone

•adiabaticity condition is fulfilled when precessional drift 
frequency is fast compared to mode frequency
•if perturbation tries to adiabatically change the flux 
through these orbits, the orbits have to shift or tilt in order 
to preserve the flux
•depending on the EP distribution function, this can result a 
positive work (δW), i.e. the mode has to do work on the 
particles, i.e. the EP are stabilising
•this is the mechanism for sawtooth stabilisation by EPs, i.e. 
the kink mode that triggers the crash is suppressed
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n=1 fishbone

•if the 3rd adiabatic invariant breaks down, i.e. when EPs 
are not fast enough compared to mode frequency, the 
mode can be destabilised

•in this case the EP radial gradient at the resonance  
together with the background diamagnetic effects provide 
a drive for the (1,1) mode

•two branches: diamagnetic and precessional fishbones; 
precessional resonance:

•diamagnetic branch: EP drive (density) is not large enough: 
drive due to gradient of background thermal ions, optimal 
for ω*i ~ ωprec,EP

with

⇤Whot ⇥
�
d3vdr

 f

 r

⇧

⇧ � ⇧Dh
⌅(⇧,v, r) (14)

showing that the resonance condition in this case is indeed ⇧ = ⇧Dh and that the drive

depends again on the radial gradient of the distribution function. Whereas the first two

terms describe the MHD part of internal kink mode, the third term accounts for its desta-

bilisation below the ideal-MHD threshold. The associated instability is called fishbone

mode because of its bursty pattern (see experimental chapter): the missing drive after

the resonant particles have been expelled by the mode leads to a ’cyclic’ behaviour that

is observed in several diagnostics.

The branch related to ⇧�i in equation (13) is called diamagnetic fishbone, where ⇧�i =
k�

eBni

⇥pi
⇥r and k� = �m/r = �1/r have to be evaluated at the q = 1 surface. It can be

excited in situations where the fast particle density is not high enough to trigger the

precessional fishbones. The driving force in this case is the gradient of the background

thermal ions. Furthermore, for the instability to develop, a ’viscous’ dissipative force is

required e.g. produced by a mode-particle resonance that scatters energetic ions. It can

be shown that the drive becomes optimal when ⇧Dh ⇥ ⇧�i.

Figure (8) shows the relationship between the two fishbone types for a given normalised

ideal growth rate ⇥̂MHD = (⇧A/⇧̄Dh)⇥MHD. Experimentally, both branches can be ob-

served but also intermediate situations where both excitation mechaninisms are present

simultaneously can be realised.

Fast particle stahilisation I h l I  

When both the stabilisation of low frequency internal kink modes and the excitation of m = 1 fishbone 
modes are considered, a stability window can be obtained, up to a maximum value of Pp corresponding to 
TMHD - EDP. This maximum stable pp can exceed significantly the ideal MHD threshold value, 
PpMHD, when the following conditions are met (we restrict ourselves to pllh - EsPlh; see Coppi et al. 
1990, for the isouopic limit): 

(18) 

[cf. Eq. (14% where the numerical factors a, and a 2  depend on the q profile and on the detailed form of 
the fast particle distribution function. Pegoram et al(1989) considered a distribution function, relevant to 
on-axis ICRF heating, of the type Fh = const. ( l / A ) ( ~ ~ h ) ~ / L e x p ( - ( z / Z h ) [ l + ( A - l ) ~ / A ~ ] ] ,  where A < 1 
can be varied to adjust the anisotropy ratio P I I ~ ~ J P U I  on axis [in the limit A + 0, Fh becomes proportional to 
exp[-(Z/Zh )l&A-l)]. This form of Fh represents a fair analytic fit  to the fast ion contour levels in velocity 
space obtained from the numerical solution of the relevant Fokker-Planck equation (see, e.g.. Kerbel and 
McCoy, 1985). Adopting this distribution function (Coppi et al, 1989), ap example of the stability 
diagram in the plane defmed by the Pt3GUlEterS ?MHD s (OA/aDhhHD and p p h  (WA/aDh)(!&pdis) 
is shown in Fig. Sa for &i I Wdi/EDh = 0.075. The corresponding value of the frequency along the 
marginal stability curve is shown in Fig. 8b. The stable domain is relative;ly insensitive to the exact value 
of 6a provided i)& < IAK/(dAK/d&l6=,. The fishbone mode with o - o d i  is unstable in a narrow band 
to the left of the stable domain, while the stability region for the precessional drift fishbone instability lies 
to the right of the stable domain. Elsewhere, the ideal-MHD internal kink mode is unstable. The 6d- 
fishbone regime and the precessional drift fishbone regime codesce and the stable window disappears 
when a j i  - GDh. An example of the stable domain in the (hdi.pph) plane is shown in Fig. 9 for yMHD 
= 0.1 
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We sketch briefly the mathematics involved in the analysis of the stability window (Coppi et al. 1988b and 
1990; White et al, 1989, Zhang et al, 1989). The kinetic part of the fast ion pressure response, SpLhfi, 
becomes fieauencv deoendent: 

where w.h = (oDd!E)(aF/ar)(aF/a!E)-'R and derivatives with respect to !E are taken at constant p. 
Equation (19), which is obtained via a solution of the linearised Vlasov equation in the drift-kinetic 

Figure 8: Stability diagram of the fishbone mode in the �hot - ⇧�i plane. Here, ⇥̂di = 0.1.

[6]

3.3 Non-Linear Fast Particle Dynamics

For ITER it is expected that the EP-drive will be strong enough to destabilise AEs and/or

EPMs. Therefore, their non-linear behaviour, possible saturation mechanisms and the re-

lated EP-transport will be one of the main research topics at ITER.



Advanced Courses EP, 2020

with

⇤Whot ⇥
�
d3vdr

 f

 r

⇧

⇧ � ⇧Dh
⌅(⇧,v, r) (14)

showing that the resonance condition in this case is indeed ⇧ = ⇧Dh and that the drive

depends again on the radial gradient of the distribution function. Whereas the first two

terms describe the MHD part of internal kink mode, the third term accounts for its desta-

bilisation below the ideal-MHD threshold. The associated instability is called fishbone

mode because of its bursty pattern (see experimental chapter): the missing drive after

the resonant particles have been expelled by the mode leads to a ’cyclic’ behaviour that

is observed in several diagnostics.

The branch related to ⇧�i in equation (13) is called diamagnetic fishbone, where ⇧�i =
k�

eBni

⇥pi
⇥r and k� = �m/r = �1/r have to be evaluated at the q = 1 surface. It can be

excited in situations where the fast particle density is not high enough to trigger the

precessional fishbones. The driving force in this case is the gradient of the background

thermal ions. Furthermore, for the instability to develop, a ’viscous’ dissipative force is

required e.g. produced by a mode-particle resonance that scatters energetic ions. It can

be shown that the drive becomes optimal when ⇧Dh ⇥ ⇧�i.

Figure (8) shows the relationship between the two fishbone types for a given normalised

ideal growth rate ⇥̂MHD = (⇧A/⇧̄Dh)⇥MHD. Experimentally, both branches can be ob-

served but also intermediate situations where both excitation mechaninisms are present

simultaneously can be realised.

Fast particle stahilisation I h l I  

When both the stabilisation of low frequency internal kink modes and the excitation of m = 1 fishbone 
modes are considered, a stability window can be obtained, up to a maximum value of Pp corresponding to 
TMHD - EDP. This maximum stable pp can exceed significantly the ideal MHD threshold value, 
PpMHD, when the following conditions are met (we restrict ourselves to pllh - EsPlh; see Coppi et al. 
1990, for the isouopic limit): 

(18) 

[cf. Eq. (14% where the numerical factors a, and a 2  depend on the q profile and on the detailed form of 
the fast particle distribution function. Pegoram et al(1989) considered a distribution function, relevant to 
on-axis ICRF heating, of the type Fh = const. ( l / A ) ( ~ ~ h ) ~ / L e x p ( - ( z / Z h ) [ l + ( A - l ) ~ / A ~ ] ] ,  where A < 1 
can be varied to adjust the anisotropy ratio P I I ~ ~ J P U I  on axis [in the limit A + 0, Fh becomes proportional to 
exp[-(Z/Zh )l&A-l)]. This form of Fh represents a fair analytic fit  to the fast ion contour levels in velocity 
space obtained from the numerical solution of the relevant Fokker-Planck equation (see, e.g.. Kerbel and 
McCoy, 1985). Adopting this distribution function (Coppi et al, 1989), ap example of the stability 
diagram in the plane defmed by the Pt3GUlEterS ?MHD s (OA/aDhhHD and p p h  (WA/aDh)(!&pdis) 
is shown in Fig. Sa for &i I Wdi/EDh = 0.075. The corresponding value of the frequency along the 
marginal stability curve is shown in Fig. 8b. The stable domain is relative;ly insensitive to the exact value 
of 6a provided i)& < IAK/(dAK/d&l6=,. The fishbone mode with o - o d i  is unstable in a narrow band 
to the left of the stable domain, while the stability region for the precessional drift fishbone instability lies 
to the right of the stable domain. Elsewhere, the ideal-MHD internal kink mode is unstable. The 6d- 
fishbone regime and the precessional drift fishbone regime codesce and the stable window disappears 
when a j i  - GDh. An example of the stable domain in the (hdi.pph) plane is shown in Fig. 9 for yMHD 
= 0.1 

wdi <aDh and naoE:[~;-((p:m)Z] s ESpph < az+Dh/oA 

unstable,. I I' Ad, 0.075 

Precessional drill 
2 STABLE fishbones 

WEOh 

00" - 

0 

"e c 
0 

fishbones 

--._ ._ .. 
owo, Fishbone 

0.1 0.2 0.3 0.4 

I P h  

Fishbones 

he, 

STABLE 0.4 

drin 

w - o., 0.2 

2 a 
0.1 0.2 0.3 0.0 

bPh 

. . .. ~~ 

:szDh)E&ph far fired V d W  hd i  a Wdi/$bh = 0.oii. 
(b) oscillation frequency, W. along lhe marginal stabilily 
curve. 

We sketch briefly the mathematics involved in the analysis of the stability window (Coppi et al. 1988b and 
1990; White et al, 1989, Zhang et al, 1989). The kinetic part of the fast ion pressure response, SpLhfi, 
becomes fieauencv deoendent: 

where w.h = (oDd!E)(aF/ar)(aF/a!E)-'R and derivatives with respect to !E are taken at constant p. 
Equation (19), which is obtained via a solution of the linearised Vlasov equation in the drift-kinetic 

Figure 8: Stability diagram of the fishbone mode in the �hot - ⇧�i plane. Here, ⇥̂di = 0.1.

[6]

3.3 Non-Linear Fast Particle Dynamics

For ITER it is expected that the EP-drive will be strong enough to destabilise AEs and/or

EPMs. Therefore, their non-linear behaviour, possible saturation mechanisms and the re-

lated EP-transport will be one of the main research topics at ITER.

3.2 Non-ideal and Fast Particle E�ects on the m = 1, n = 1 mode

As discussed in chapter 3.3.1.1.5, the ideal MHD stability of the m = 1, n = 1 internal

kink mode in a tokamak is determined by higher order terms (⇥4). Therefore, non-ideal

e⇥ects such as energetic particles compete with the small MHD contributions to �WMHD.

Both situations, stabilising and destabilising, are possible in the presence of fast particles.

The fast particle stabilisation of the low frequency (1, 1) MHD mode is a consequence of

the conservation of the third adiabatic invariant of the particle motion that in a tokamak

corresponds to a conservation of the poloidal magnetic flux through the area described

by the trajectory of the precessional drift motion in toroidal direction. The adiabatic

invariance of this quantity is ensured if the time the particles need complete a full orbit

⌃D = 2⇧/�D is short compared to the mode’s characteristic time 2⇧/�. In a tokamak �D

is given by the following expression:

�D =
�
vD ·⇤(⌥� q⇤)

⇥(0)
=

vD0

r
[(cos ⇤)(0) + ŝ(⇤ sin ⇤)(0)] (12)

where vD0 = µ/(m�R) is the vertical magnetic drift, � = ZeB/m, µB = mv2⇥/2,

ŝ = r/q(dq/dr) the magnetic shear and ⌥ and ⇤ the toroidal and poloidal angle, re-

spectively. The subsript (0) denotes the bounce avaerage operator. If a low frequency

perturbation is trying to adiabatically change the flux through these orbits, the orbits

will tilt or shift in space in order to preserve this flux. Depending on the details of the

fast-particle distribution function (especially the anisotropy plays an important role here)

and on the q-profile, this can result in a positive sign for �Whot, i.e. the mode has to do

positive work to the fast particles, i.e. they can have a stabilising influence on the mode

according to the generalised energy principle given in eqn. (1). As a consequence the

internal kink growth rate is reduced and since the internal kink is considered as triggering

mechanism for so-called sawtooth crashes (see exeperimental/next chapter) the sawtooth-

free period in a tokamak discharge can be greatly extended by the presence of energetic

particles.

If the third adiabatic invariant breaks down, e.g. if the fast particles are not energetic

enough, or the fast particle density exeeds a critical theshold, the (1, 1) mode can be

destabilised. In this case, the gradients of the resonant trapped ion distribution function

and background diamagnetic e⇥ects provide the energy reservior that drives the mode.

The corresponding unstable branches are called precessional and diamagnetic fishbones.

In the first case an energy transfer occurs due to the resonance between the toroidal pre-

cession frequency �Dh of fast trapped ions (i.e. the frequency with which the banana tips

of a trapped particle orbit drift in the toroidal direction) and the kink mode. The energy

is tapped from the spatial and/or velocity space gradients of the fast ion distribution

function, similar to the TAE case describe above. Writing down the energy principle (eqn

1) for this case leads to

� i(�(� � ��i))
1/2

�A
+ �WMHD + �Whot = 0 (13)

n=1 fishbone

ω*i

[Porcelli 1991]

also a non-bursting n=1 kink mode, so called LLM (long lived mode) was 
recently observed at MAST and NSTX
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•sources and creation of a super-thermal particle population
•particle motion in 2D and 3D systems, effect of static 
perturbations
•linear physics of resonant phenomena:

1. Experimental evidence
2. Alfvén waves 
3. Energetic particle modes
4. n=1 modes

•non-linear phenomena and EP transport
1.perturbative regime
2.adiabatic regime
3.non-adiabatic regime
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Motivation Theorie Simulationsresultate Zusammenfassung

Einzelne n = 4-TAE

Anwachsen der Modenamplitude mit anschließender Sättigung
Umverteilung der energetischen Teilchen
[H. Berk, Phys. Letters A 162, 475 (1992)]
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non-linear mode saturation: 

•gradient of energetic particles flattens
•radial redistribution⇔ loss of toroidal momentum

•mode amplitude grows
•saturation amplitude scales γ2~A

Nonlinear alfvénic fast particle transport and losses 5

5.2. Theoretical Picture

It is observed that in a multiple mode scenario, there is a much larger conversion of free energy to wave

energy compared to summing up all single mode cases.

It is known that the principle of mode growth γ through a gradient in the radial particle distribution

– according to γ ∝ ∇ f (s) [16] can be extended to multiple modes [17–20] and explain this effect

partially. This picture of gradient driven double resonance is based on the precondition that modes

share resonances in the same phase space area. Through the resulting redistribution by each mode, a

steeper gradient is produced at the other mode’s position, enhancing its drive. The mode overlapping

leads then to a much larger conversion of free energy to wave energy.

However, this mechanism can only work if there is mode overlap also in the radial direction. In

[11] simulations were carried out, finding a double-resonant effect also without this precondition.

Furthermore, a superimposed oscillation on the modes’ amplitudes was observed, clearly indicating mode-

mode interaction. The modes without radial overlap are then coupled radially through the particles’

trajectories: a population of particles that fulfills the resonance condition (1) and passes both modes’

location at once, can transfer energy from one mode to the other [11]. In the following, this mechanism

is called inter-mode energy transfer: By damping one mode, particles gain energy E and also toroidal

momentum Pζ due to [10]

(E −
ω

n
Pζ) = const (3)

Since Pζ ∝ −Ψ, they are redistributed inwards. When passing through the second mode, the particles lose

energy and toroidal momentum by driving the mode. As there is no radial net drift in this mechanism,

it can continue as long as the dominant mode is strong, making this the dominant process over other

possible combinations of mode-mode energy exchange. Particles that gain energy from both modes or

lose energy to both modes soon leave the resonant phase space area. It is the exchange of energy between

both modes that leads to the observed oscillation of their amplitudes: the mode receives energy with the

particle bounce frequency ωb, which equals ∆ω as shown in the following: The resonance condition

shown in (1) has to be fulfilled for both modes ’1’ and ’2’ simultaneously, leading to

ωt p(n1− n2)−ωb(p1− p2) =∆ω (4)

For the simplest case, equal toroidal mode numbers n and p1 = 1, p2 = 0 this leads to ωb =∆ω.

Indeed, the lowest bounce harmonics p = 0,±1 are the most relevant ones; however, the issue of different

toroidal mode numbers n will be discussed later.

5.3. Simulation Results

Multi-mode simulations are carried out with different radial distances ∆s between the Alfvénic modes.

The linear phase The modes’ amplitudes in the linear phase, as depicted in figure 5 confirm already some
of the results presented in [11]: at least one mode grows steeper in the double mode scenario compared
to the single mode simulation (the TAEs in figure 5: dark colors). But the picture is a bit more compli-
cated: in most cases, both modes grow stronger in the double mode scenario than in the single mode
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toroidal mode numbers n will be discussed later.

5.3. Simulation Results

Multi-mode simulations are carried out with different radial distances ∆s between the Alfvénic modes.

The linear phase The modes’ amplitudes in the linear phase, as depicted in figure 5 confirm already some
of the results presented in [11]: at least one mode grows steeper in the double mode scenario compared
to the single mode simulation (the TAEs in figure 5: dark colors). But the picture is a bit more compli-
cated: in most cases, both modes grow stronger in the double mode scenario than in the single mode

carried out. A review on recent modelling with fluid and hybrid codes can be found
in ref. [26]. Since the transport of EPs during sawteeth is very strong it can be easily
measured by direct fast ion measurements, such as FIDA[166]. As an example, fig.
16 shows the evolution of the EP density as a function of the normalised minor radius
during one sawtooth period.Plasma Phys. Control. Fusion 53 (2011) 065010 B Geiger et al
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Figure 18. Temporal evolution of approximated fast-ion density profiles of mainly co-rotating fast
ions with energies between 25 and 60 keV from discharge #25528. At 565 ms a sawtooth-like crash
caused by a (2,1) double tearing mode redistributes fast ions toward the plasma edge.

the fast-ion population from the plasma center and redistributes the fast ions toward the plasma
edge. The inversion radius of the crash can be located with the FIDA measurement at about
rhotor = 0.4. This is in good agreement with the soft-x-ray measurement. Moreover, FILD
measurements agree with the FIDA measurement in so far as strong losses of fast ions are
observed during the crash. A detailed analysis of the physics mechanism responsible for this
strong redistribution and the observed fast-ion losses is the subject of an upcoming publication.

6. Conclusion

The FIDA technique with toroidally viewing LOS has been successfully applied to NBI heated
plasmas in the full tungsten AUG tokamak. The combination of the NBI and diagnostic’s
geometry allow the measurement of relatively small changes of the fast-ion phase-space
population due to a narrow weighting function in the velocity space. In general, in AUG
the background emission can be subtracted as a flat offset without beam modulation due to the
low contamination of the FIDA spectra with impurity lines. Thus, the temporal evolution of
the fast-ion spatial distribution can be studied in the presence of MHD instabilities.

Radial FIDA profiles for on- and off-axis NBI heating have been measured with high spatial
resolution. By changing the integration wavelength range used to calculate the radial FIDA
intensity profiles one can study different parts of the fast-ion velocity space. When comparing
the shape of the measured radial FIDA intensity profiles with the shape of simulated profiles,
good agreement in MHD-quiescent plasmas with low heating power was found for the classical
fast-ion distribution function. Finally, the good time resolution of the diagnostic allowed the
experimental observation of a strong redistribution of fast ions due to a q = 2 sawtooth-like
crash.

Appendix

The radial resolution of a FIDA diagnostic depends on the nature of the FIDA emission, on
the geometry of the diagnostic’s LOS and on the geometry of the NBI, i.e. the spatial extent
of the 3D density of halo and beam neutrals. It can be determined using the FIDASIM code,
described in more detail in section 5. FIDASIM is a Monte Carlo code that simulates the

17

Figure 16: Temporal evolution of approximated fast-ion density profiles of mainly co-rotating fast ions with
energies between 25 and 60 keV from ASDEX Upgrade discharge #25528. At 565 ms a sawtooth-like
crash caused by a (2, 1) double tearing mode redistributes fast ions towards the plasma edge.[167]

5.6. Non-Linear fast particle dynamics and overall transport
Predicting the non-linear saturation amplitudes of all unstable modes together with

the overall EP transport for a given scenario is the ultimate goal of EP research. As
discussed in the introduction, this goal is still very far due to the complexity of the
problem. However, within the last decade substantial progress in capturing key ele-
ments of non-linear Alfvénic transport has been made.
For ITER, it is expected that the EP-drive will be strong enough to destabilise AEs
and/or EPMs[158] depending on the details of the scenario. Their non-linear behaviour,
possible saturation mechanisms, and the related EP transport will be one of the main
research topics at ITER. The crucial question will be if the system will be in a weakly
non-linear or strongly non-linear regime, i.e. if there will be a ‘sea’ of small amplitude
modes [168] that convectively or diffusively transport EPs form the plasma core or if
there will be a few bursting or even avalanche-like events [169] with more unfavourable
consequences, in particular for the first wall of the device.
For weakly unstable AEs with |�L/⇤| ⇥ 10�2, it was found [170, 171, 172] that
the simple bump-on-tail model - augmented with a damping and collision term - ex-
plains successfully many of the complex non-linear features observed experimentally.
Near the marginal stability, the mode evolution is determined by three characteristic
quantities: the linear growth rate, �L, the damping rate �d, and the effective collision
frequency ⇥eff for the EPs to be scattered out of this resonance by collisions or other
stochastic processes. Depending on the parameter ⇥ = ⇥eff/(�L � �d), four differ-
ent regimes can be found: steady state, periodic amplitude modulation, chaotic, and
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Einzelne n = 4-TAE

Anwachsen der Modenamplitude mit anschließender Sättigung
Umverteilung der energetischen Teilchen
[H. Berk, Phys. Letters A 162, 475 (1992)]
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non-linear mode saturation: 

•gradient of energetic particles flattens
•radial redistribution⇔ loss of toroidal momentum

•mode amplitude grows

Nonlinear alfvénic fast particle transport and losses 5

5.2. Theoretical Picture

It is observed that in a multiple mode scenario, there is a much larger conversion of free energy to wave

energy compared to summing up all single mode cases.

It is known that the principle of mode growth γ through a gradient in the radial particle distribution

– according to γ ∝ ∇ f (s) [16] can be extended to multiple modes [17–20] and explain this effect

partially. This picture of gradient driven double resonance is based on the precondition that modes

share resonances in the same phase space area. Through the resulting redistribution by each mode, a

steeper gradient is produced at the other mode’s position, enhancing its drive. The mode overlapping

leads then to a much larger conversion of free energy to wave energy.

However, this mechanism can only work if there is mode overlap also in the radial direction. In

[11] simulations were carried out, finding a double-resonant effect also without this precondition.

Furthermore, a superimposed oscillation on the modes’ amplitudes was observed, clearly indicating mode-

mode interaction. The modes without radial overlap are then coupled radially through the particles’

trajectories: a population of particles that fulfills the resonance condition (1) and passes both modes’

location at once, can transfer energy from one mode to the other [11]. In the following, this mechanism

is called inter-mode energy transfer: By damping one mode, particles gain energy E and also toroidal

momentum Pζ due to [10]

(E −
ω

n
Pζ) = const (3)

Since Pζ ∝ −Ψ, they are redistributed inwards. When passing through the second mode, the particles lose

energy and toroidal momentum by driving the mode. As there is no radial net drift in this mechanism,

it can continue as long as the dominant mode is strong, making this the dominant process over other

possible combinations of mode-mode energy exchange. Particles that gain energy from both modes or

lose energy to both modes soon leave the resonant phase space area. It is the exchange of energy between

both modes that leads to the observed oscillation of their amplitudes: the mode receives energy with the

particle bounce frequency ωb, which equals ∆ω as shown in the following: The resonance condition

shown in (1) has to be fulfilled for both modes ’1’ and ’2’ simultaneously, leading to

ωt p(n1− n2)−ωb(p1− p2) =∆ω (4)

For the simplest case, equal toroidal mode numbers n and p1 = 1, p2 = 0 this leads to ωb =∆ω.

Indeed, the lowest bounce harmonics p = 0,±1 are the most relevant ones; however, the issue of different

toroidal mode numbers n will be discussed later.

5.3. Simulation Results

Multi-mode simulations are carried out with different radial distances ∆s between the Alfvénic modes.

The linear phase The modes’ amplitudes in the linear phase, as depicted in figure 5 confirm already some
of the results presented in [11]: at least one mode grows steeper in the double mode scenario compared
to the single mode simulation (the TAEs in figure 5: dark colors). But the picture is a bit more compli-
cated: in most cases, both modes grow stronger in the double mode scenario than in the single mode
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of the results presented in [11]: at least one mode grows steeper in the double mode scenario compared
to the single mode simulation (the TAEs in figure 5: dark colors). But the picture is a bit more compli-
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carried out. A review on recent modelling with fluid and hybrid codes can be found
in ref. [26]. Since the transport of EPs during sawteeth is very strong it can be easily
measured by direct fast ion measurements, such as FIDA[166]. As an example, fig.
16 shows the evolution of the EP density as a function of the normalised minor radius
during one sawtooth period.Plasma Phys. Control. Fusion 53 (2011) 065010 B Geiger et al
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Figure 18. Temporal evolution of approximated fast-ion density profiles of mainly co-rotating fast
ions with energies between 25 and 60 keV from discharge #25528. At 565 ms a sawtooth-like crash
caused by a (2,1) double tearing mode redistributes fast ions toward the plasma edge.

the fast-ion population from the plasma center and redistributes the fast ions toward the plasma
edge. The inversion radius of the crash can be located with the FIDA measurement at about
rhotor = 0.4. This is in good agreement with the soft-x-ray measurement. Moreover, FILD
measurements agree with the FIDA measurement in so far as strong losses of fast ions are
observed during the crash. A detailed analysis of the physics mechanism responsible for this
strong redistribution and the observed fast-ion losses is the subject of an upcoming publication.

6. Conclusion

The FIDA technique with toroidally viewing LOS has been successfully applied to NBI heated
plasmas in the full tungsten AUG tokamak. The combination of the NBI and diagnostic’s
geometry allow the measurement of relatively small changes of the fast-ion phase-space
population due to a narrow weighting function in the velocity space. In general, in AUG
the background emission can be subtracted as a flat offset without beam modulation due to the
low contamination of the FIDA spectra with impurity lines. Thus, the temporal evolution of
the fast-ion spatial distribution can be studied in the presence of MHD instabilities.

Radial FIDA profiles for on- and off-axis NBI heating have been measured with high spatial
resolution. By changing the integration wavelength range used to calculate the radial FIDA
intensity profiles one can study different parts of the fast-ion velocity space. When comparing
the shape of the measured radial FIDA intensity profiles with the shape of simulated profiles,
good agreement in MHD-quiescent plasmas with low heating power was found for the classical
fast-ion distribution function. Finally, the good time resolution of the diagnostic allowed the
experimental observation of a strong redistribution of fast ions due to a q = 2 sawtooth-like
crash.

Appendix

The radial resolution of a FIDA diagnostic depends on the nature of the FIDA emission, on
the geometry of the diagnostic’s LOS and on the geometry of the NBI, i.e. the spatial extent
of the 3D density of halo and beam neutrals. It can be determined using the FIDASIM code,
described in more detail in section 5. FIDASIM is a Monte Carlo code that simulates the

17

Figure 16: Temporal evolution of approximated fast-ion density profiles of mainly co-rotating fast ions with
energies between 25 and 60 keV from ASDEX Upgrade discharge #25528. At 565 ms a sawtooth-like
crash caused by a (2, 1) double tearing mode redistributes fast ions towards the plasma edge.[167]

5.6. Non-Linear fast particle dynamics and overall transport
Predicting the non-linear saturation amplitudes of all unstable modes together with

the overall EP transport for a given scenario is the ultimate goal of EP research. As
discussed in the introduction, this goal is still very far due to the complexity of the
problem. However, within the last decade substantial progress in capturing key ele-
ments of non-linear Alfvénic transport has been made.
For ITER, it is expected that the EP-drive will be strong enough to destabilise AEs
and/or EPMs[158] depending on the details of the scenario. Their non-linear behaviour,
possible saturation mechanisms, and the related EP transport will be one of the main
research topics at ITER. The crucial question will be if the system will be in a weakly
non-linear or strongly non-linear regime, i.e. if there will be a ‘sea’ of small amplitude
modes [168] that convectively or diffusively transport EPs form the plasma core or if
there will be a few bursting or even avalanche-like events [169] with more unfavourable
consequences, in particular for the first wall of the device.
For weakly unstable AEs with |�L/⇤| ⇥ 10�2, it was found [170, 171, 172] that
the simple bump-on-tail model - augmented with a damping and collision term - ex-
plains successfully many of the complex non-linear features observed experimentally.
Near the marginal stability, the mode evolution is determined by three characteristic
quantities: the linear growth rate, �L, the damping rate �d, and the effective collision
frequency ⇥eff for the EPs to be scattered out of this resonance by collisions or other
stochastic processes. Depending on the parameter ⇥ = ⇥eff/(�L � �d), four differ-
ent regimes can be found: steady state, periodic amplitude modulation, chaotic, and
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ASDEX Upgrade
Experimental characterisation of the BAE mode (’Sierpes’)

Non -Alfvénic character (#21007, Mirnov coils)

   Shot 21007: MHA:B31-14
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non-linear interaction of several modes

Nonlinear alfvénic fast particle transport and losses 9

(a) Growth rates enhancement (b) Amplitudes enhancement

Figure 9: Mode evolution scanned over the radial mode distance ∆s in the inverted q profile. Depicted are the

ratios of growth rates (a) and amplitudes (b) in double mode simulation over single mode simulation,

depending on ∆s. Pink: RSAE, blue: TAE. One can clearly see that larger radial mode distances lead

to higher amplitudes, whereas amplitudes are even lower than in the single mode case for ∆s ≤ 0.15.

The growth rates, however, are higher than in the single mode simulation throughout the ∆s range. The

RSAE growth rate experiences a small drop at ∆s ≈ 0.15.

However, if the growth rates are relatively low for some reasons (e.g. small mode width, small fast
particle beta), the redistribution is not strong enough to lead to a dominant gradient driven double
resonance. In these cases, the inter-mode energy transfer mechanism can be prevailing (even in a later
phase). The dominant mode is weakened through inter-mode energy transfer to the subdominant mode
(independently on their radial position relative to each other), as depicted in figure 10. The process
saturates, as the modes’ amplitudes converge towards comparable levels. In this simulation, there is no
particularly strong redistribution.
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Figure 10: Mode amplitudes over time in double mode (straight lines) versus the single mode (dashed) simulation

with low growth rates (for the MHD equilibrium at t = 1.51s, βf = 2.5% with RSAE (pink) at s = 0.3

and TAE (blue) at s = 0.4). Here, the redistribution is too weak to lead to significant gradient driven

double resonance. Inter-mode energy transfer (from TAE to RSAE) dominates.

To be able to investigate the stochastic regime of the Alfvénic modes also in the later MHD equilibrium,

where the growth rates are lower, the modes’ positions are shifted outwards. These simulations revealed

Motivation Theorie Simulationsresultate Zusammenfassung

2 Moden: n = 4-TAE und n = 4-BAE

Größere Anwachsrate für beide Moden ohne Sättigung der Amplituden
Kollektive Umverteilung der energetischen Teilchen durch radiale
Überlappung der Moden [B. Breizman, Phys. Fluids B 5, 3217 (1993)]
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13 / 18experimental data show that the 
transport of fast ions strongly 
increases if two or more modes are 
present:  
phase space overlap (here radial 
overlap) is the crucial interaction 
parameter [M Schneller, Ph Lauber 2012]
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non-linear evolution: phase space stochastisation 

investigation for modes with very different frequencies: 
•modes are coupled by particles that are trapped radially between two 
modes

•linear dominant modes can become non-linearly sub-dominant and vice 
versa

multiple resonances overlap in phase space and at a relatively low critical 
mode amplitude (10-4 δB/B vs. 10-3 δB/B for single modes)
⇒not only resonant particles are transported
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(a) redistribution in phase space









(b) losses in phase space

Figure 15: Results for double mode simulation in inverted q profile: Redistribution in E-s space during (a):

redistribution phase (t ≈ 6.0 · 10−4), (b) stochastic phase (t ≈ 18.0 · 10−4) Red: particles are added at

phase space position, blue: particles move away. The resonance lines are overplotted (pink) as well as

the radial mode positions, to show the good accordance of redistribution areas (black arrows) and the

resonance lines in the modes’ vicinity. The redistribution in the areas, where the resonance lines meet

the loss boundary (black circles) coincide with the losses that are given in figure 16a.

Plotting the temporal evolution of losses appearance at the first wall in energy space gives figure 16. The

first distinct peak is ejected before t = 10−4, when the modes are still at negligibly low amplitudes. These

losses, called prompt losses, must be incoherent, as there cannot be any mode correlation yet. Although

the marker were loaded according to a Fermi-like potential law f (s) = (1− s2)5 within a radial range of

s < 0.6 that does not give any prompt losses for the monotonic q profile case, there are many losses at

the first wall in the simulation with the inverted q profile. The main reason for this result is the higher

absolute q value in the inverted q profile profile, leading to larger orbit width w (q ∝ w) and to more

losses.

After the ejection of the prompt losses, during the linear phase, no further losses appear, until the mode

amplitude is high enough to produce resonant losses (in the inverted q profile case), right before the

stochastic regime sets in: two distinct loss peaks appear at around 800 keV and roughly 1 MeV. These

particles are in resonance with the p = 2 harmonics of the TAE and the p = 3 harmonics of the RSAE,

gain energy and cross the loss boundary towards unconfined orbits (see resonance plot 3).

When the modes reach the stochastic regime, losses increase strongly and across a relatively wide energy

range (500 to 1000 keV) – but only in the case of the inverted q profile. In the monotonic q profile

scenario however, only few losses appear at high energies and no losses below 700 keV, although the

mode amplitudes reach comparable levels. This result confirms, what was expected when looking at

the resonance plots: in the case of the inverted q profile, the loss boundary is clearly larger, reaching

down to lower energies at every radial position. Furthermore, the resonance lines favor the mode-particle

interaction better in the inverted q profile, as they lie more densely at lower energies, covering a larger

part of the particle populated phase space.

Concerning the identity of the abundant and mainly incoherent losses measured in the experiment during

BERK et al. 
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FIG. 3. Time evolution of resonance widths (shaded areas) for a 
multimode system where mode overlap does not occur. The time 
range of the graph is selected to coincide with that of Fig. 5. 
System evolved from €(v, t = 0) = 0 and W,(t = 0) values at  
thermal noise levels to give benign pulsations, with period of the 
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FIG. 4.  Particle distribution function as a function of time for 
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FIG. 5. Time evolution of resonance widths for a multimode sys- 
tem where mode overlap leads to the domino effect. The curves, 
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FIG. '7. Particle distribution function as a function of time for 
the simulation shown in Fig. 5. 
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‘domino effect’

Berk 1995: model including both: overlap and finite resonance width

BERK et al. 

In Section 2 we describe the physical self-consistent 
line broadened quasi-linear model. In Section 3 we dis- 
cuss the theory for the non-linear domino effect. In 
Section 4 we present preliminary numerical results for 
the bump-on-tail instability. In Section 5 we discuss 
how the method can in principle be extended to more 
complicated geometry. In Section 6 a brief conclusion 
is presented. 

2. LINE BROADENING MODEL 

It has been previously observed that the Alfvkn 
wave problem is mathematically similar to the one 
dimensional bump-on-tail problem. Here we consider 
the case where in both problems the wave spectrum 
is discrete. According to quasi-linear theory, diffusion 
only occurs for the particles that exactly fulfil the reso- 
nance condition. In the bump-on-tail problem the res- 
onance condition is On = wn - k n v  = 0, with wn the 
eigenfrequency for the nth mode (for the bump-on- 
tail problem we take wn = wpe electron plasma fre- 
quency). For a potential of the form 

the quasi-linear equation for the evolution of the dis- 
tribution function, f (v),  takes the form 

Here, Q  ̂ is a shorthand notation for the quasi-linear 
operator, t is time, e and m are the energetic parti- 
cle charge and mass, v is the energetic particle speed 
and the amplitude of the perturbed electrostatic 
potential. 

Associated with Eq. (1) is the wave evolution equa- 
tion, which, written as the evolution of wave momen- 
tum Wn, is of the form 

a - wn = 27, wn 
at 
where 

Ikn 4no12 wn = 
277 vn 

W n  
U, = - 

kn 

(3) 

(4) 

Note that Eqs (1)-(4) imply conservation of momen- 
tum, 

(5) 

with C a time independent constant. 
There is, however an intrinsic difficulty in solving 

Eqs (1) and (3) if one takes the expression for D ( v )  
in Eq. ( 2 )  literally. This is because the domain of the 
diffusion coefficient is 'over a point'. Consequently, as 
written, the distribution function can only relax in an 
infinitesimal interval. In reality the diffusion domain 
should have a width in U. In fact when a finite growth 
rate, -yn > 0, is taken into account, the diffusion coef- 
ficient is broadened as one finds 

In fact the quasi-linear coefficient is really best applica- 
ble when there may be waves that cause orbit stochas- 
ticity due to mode overlap. Only then is the diffu- 
sion coefficient independent of yn.  Other cases can- 
not be treated as rigorously. When we do not have 
orbit stochasticity, we seek a method that realistically 
models the conversion of particle momentum to wave 
momentum. The results of the model system we use 
can be benchmarked with rigorously derived simula- 
tion results to ascertain the system's accuracy. 

When we have steady waves, without orbit over- 
lap, it is well known that the mean distribution flat- 
tens around the resonant particle region over a width 
that is comparable to the separatrix width of the 
wave-particle interaction [15, 161. A rigorous solution 
requires accounting for the wave-particle phase in cal- 
culating the wave-particle interaction. However, one 
can hope to model the wave-particle interaction by 
assuming that particles roughly within the separatrix 
width can stochastically mix in phase space, but par- 
ticles outside the separatrix width move adiabatically 
with the wave and do not mix in phase space. For the 
bump-on-tail problem we take the nth electrostatic 
wave to be of the form 

$ n ( Z , t )  = 2l$nJsin(knx -writ) (7) 

For simplicity, we take $,, to be real and positive. A 
conserved quantity is the energy in the wave frame, 
which is given by 

Particles for which -2e4,, < E,  < 2e&, lie inside 
the phase space separatrix. Particles on the separatrix 
satisfy 
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Chirikov island overlap criterion: structure 
of resonance condition does not matter 
any longer

112 Quasi-linear Theory

particle in the pattern. Here the bounce time is simply the time required

for a particle to reverse direction and return to the close proximity of its

starting point. Two outcomes of the comparison are possible. These are

i) øL ø øb ! field pattern changes prior to particle bouncing,

(Fig.3.7(b)) so that trajectory linearization is valid.

ii) øb ø øL ! the particle bounces prior to a change in the field

(Fig.3.7(c)) pattern. In this case, trapping can occur,

so linearized theory fails.

Not surprisingly, quasi-linear theory is valid when øL ø øb, so that un-

perturbed orbits are a good approximation. The question which remains is

how to relate our conceptual notations of øL, øb to actual physical quantities

which characterize the wave spectrum.

3.2.3 Characteristic time-scales in resonance processes

The key point for determining the value of øL is the realization that wave

dispersion is what limits the pattern lifetime, øL. Note the total electric field

may be written (as before) as

E(x, t) =
X

k

Eke
i(kx°!t)

or as =
X

k

Ek exp[i(k[x° vph(k)t])]

where vph(k) = !(k)/k. The pattern or packet dispersal speed is ∆(!k/k),

the net spread in the phase velocities in the packet. The net dispersal rate,

i.e. the inverse time for a wave-packet to disperse one wavelength, then is

lifetime of structure seen by particle is 
much shorter than bounce time of particles 
in this structure ⇔ 

unperturbed orbits are good approximation

3.2 Foundations, Applicability and Limitations of Quasi-linear Theory 109

entirely deterministic, according to Newton’s laws, so that

m
d2x

dt2
=

X

m

qEm cos(kxm ° !mt) (3.5a)

and if v ª !i/ki, one resonance dominates:

m
d2x

dt2
' qEi cos(kix + (kiv ° !i)t). (3.5b)

Hence, each resonant velocity defines a phase space island, shown in Fig.3.5.

The phase space island is defined by a separatrix of width ∆v ª (q¡m/m)1/2,

which divides the trajectories into two classes, namely trapped and circu-

lating. In the case with multiple resonances where the separatrices of neigh-

boring phase space islands overlap, the separatrices are destroyed, so that

the particle motion becomes stochastic, and the particle can wander or ‘hop’

in velocity, from resonance to resonance. In this case, the motion is non-

integrable and, in fact, chaotic (Chirikov, 1960; Zaslavsky and Filonenko,

1968; Smith and Kaufman, 1975; Fukuyama et al., 1977; Chirikov, 1979;

Lichtenberg and Lieberman, 1983; Ott, 1993). A simple criterion for the

onset of chaos and stochasticity is the Chrikov island overlap criterion

1
2
(∆vi + ∆vi±1) > |vph,i ° vph,i±1|. (3.6)

Here ∆v is the separatrix width, so that the LHS of Eq.(3.6) is a measure

of the excursion in v due to libration, while the RHS is the distance in

velocity between adjacent resonances. If as shown in Fig.3.6(a), LHS ø

RHS, separatrix integrity is preserved and the motion is integrable. If, on

the other hand, LHS¿ RHS, as shown in Fig.3.6(b), individual separatrices

are destroyed and particle orbit stochasticity results.

It is well known that stochastic Hamiltonian motion in velocity may be de-

scribed by a Fokker-Planck equation, which (in 1D) can be further simplified

to a diffusion equation by using a stochastic variant of Liouville’s theorem,

separatrix width

distance between resonant 
surfaces

valid if:

[Berk, 1996]
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Motivation Theorie Simulationsresultate Zusammenfassung

Schnelle Teilchenverluste

Experiment: Messung des
Gyroradius und Pitchwinkels
Simulation bisher:
Trajektorie (Guiding Centre)
nur innerhalb des Plasmas
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particle losses  - synthetic diagnostic

follow particle orbits up 
to the wall/detector

Figure 19: Left: spectrogram (a) and raw signal (b) for a specific energy channel (�EP = 70mm) of
the fast ion loss detector at ASDEX Upgrade show a separation of frequency correlated losses (‘coherent’)
and uncorrelated losses (‘incoherent’) [198]. Right: modelling of this experimental data with the extended
HAGIS code for the time point t = 1.16s reveals the loss mechanisms at different energies and the important
role of subdominant modes [201].

6. Comparison to the experiment

Although in the last chapter already a few (qualitative) non-linear comparisons to
the experiment were presented, it should be repeated that all these models have severe
limitations concerning a direct and quantitative interpretation of experiments. In this
section, a selection of recent results on the comparison of kinetic, self-consistent codes
to the experiment are summarised. Therefore, quantitative agreement for the linear
physics and for simple steady-state non-linear situations can be expected. This com-
parison could be substantially refined due to the recent development and installation
of new diagnostics and antenna systems on present-day tokamaks [208, 20]. A topic
not discussed in detail here, is the modelling of EP distributions with Fokker-Planck
and wave-heating codes. A detailed discussion would require to enter in the field of
collisional plasma physics which is not the scope of this article. For an overview, refer
to [20, 23] and references therein.

6.1. Damping of TAEs
Measurements of the damping characteristics of toroidicity induced Alfvén Eigen-

modes (TAE) in Ohmic plasmas using active excitation antennae is one of the most
effective techniques used to study the details of the damping mechanisms. This allows
the assessment of different models via direct comparison of damping model predica-
tions and experimental results. The direct measurements of TAE damping by active
excitation antennae was performed for the first time in JET [209] and later extended to
higher toroidal mode numbers n > 2 in JET [210, 211] and Alcator C-mod [212, 213].
A comprehensive code-experiment validation was carried out [55] in order to resolve
previous discrepancies of more than one order of magnitude for calculated vs measured
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(a) Inverted q profile MHD equilibrium of AUG #23824 (t � 1.15 s).

(b) Monotonic q profile MHD equilibrium of AUG #23824 (t � 1.5 s).

Figure 6.48: Loss pattern (red colored) in phase space (gyroradius ⇥ over pitch angle �o) as
measured at the FILD in AUG discharge #23824 at time t ⇥ [1.14,1.16] s (a,
from ref. [114]) and t � 1.52 s (b, ref. [32]). CITATION ok? How to find slides
of IAEA Kiev online? Further, the loss pattern as resulting from the simulation of
an ICRH generated fast particle distribution function in the MHD equilibrium of
AUG #23824 at t = 1.16 s (a) and t = 1.51 s (b) with the corresponding LIGKA-
given perturbation (see fig. 6.23 and fig. 6.24) is shown. For the distribution
function see eqs. (6.6) to (6.8). The blue line gives the boundary of the non-
prompt losses – where the majority appears in the respective lower ⇥ part within
the boundary. The green line depicts the boundary of the prompt loss appearance
at first wall (simulated with the distribution function of eqs. (6.8) to (6.10)).
The numerical values have been drift-corrected by around +6% in ⇥ and � +9o

in �o, as explained in sec. 6.1.2.

[M Schneller, PhD 2013]
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IPP-PPPL Center Meeting, 16. January 2013

Figure 24: Left: the radial fast-ion profile measured during Alfvén activity in the DIII-D tokamak is much
flatter than classically predicted (dashed line). The data are from equilibrium reconstructions (solid line) and
fast-ion D-alpha measurements (symbols) [166, 21]. Right: beam modification due to modes including beam
slowing down and continuous injection with time shown in milliseconds. Also shown are the experimental
points from the plot on the right [242].

6.3. BAEs and EGAMs
The observation and identification of BAEs in the experiment is not as trivial as

it is for TAEs and RSAEs. This is due to their intermediate frequency between the
Alfvén and the kink/fishbone-like instabilities. In fact, high frequency fishbones can
be born in the BAE gap [70] and therefore it is difficult to decide if they should be
named BAEs or fishbones. The theoretical description, however, along the lines of
eqn. (20) and eqn. (35) is unambiguous. Since also the diamagnetic frequency in-
fluences substantially the BAE mode frequency, difficulties arised when experimental
scalings had to be interpreted [139, 246]. At ASDEX Upgrade BAEs can be excited
with both NBI [231, 148] and ICRF [72] heating. Also during sawteeth cycles, BAEs
are very well visible and the diamagnetic frequency correction explains the inversion of
mode numbers [94], similar to Tore Supra results [140]. Note, that additionally RSAEs
can be excited during sawtooth cycles with a very different frequency scaling and spa-
tial localisation. They can be used to determine the evolution of q near the magnetic
axis[223, 72, 247]. Due to their higher damping, BAEs appear often as bursts, however
transitions from and to the steady state regime can be observed. The frequency scaling
agrees very well with formula (20) and its presence leads together with other Alfvén
modes such as TAEs to increased EP transport and loss [246, 198, 200].
At the same frequency, the EP-driven GAM, called EGAM was observed in several
experiments [248, 249, 250]. Although the mode is electrostatic i.e. it should be only
detectable with density fluctuation measurements, it is clearly visible in the magnetic
fluctuation diagnostics via sideband coupling [251]. It was shown that velocity space
gradients, in particular a reversed energy gradient during the beam slowing down phase
can excite this mode [250, 252, 253, 254]. Very recently, the impact of EGAMs on the
background turbulence has been examined in detail with the non-linear electrostatic
code GYSELA [255].
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in weak non-linear regime:

hybrid models predict roughly the flattening of the EP 
radial profile

[B. Heidbrink, DIII-D, PRL 2010] [R. White,2011]



NBI*power*scan*was*performed*to*

inves'gate*profile*s'ffness�

11 

•  Stored*fast*ion*energy*scales*as*~*PNBI^0.53*for*
PNBI>6.25MW.**

•  FastXion*confinement*degrades*steadily*with*increasing*

power*but*a*sharp*transi'on*to*s'ff*transport*is*not*

observed.**

Y. Todo[TCM 2015]:  DIII-D case #142111



Evolu'on*of*fast*ion*energy*flux*
brought*about*by*AEs*(1)�

22 

n=2�

n=3�

n=4�

•  steady*and*intermident*flux**
•  avalanches*with*mul'ple*modes*

•  consistent*with*resonance*overlap**
[Berk*&*Breizman,*NF*35,*1713*(*1995)]*�

Y. Todo[TCM 2015]:  DIII-D case

using the QL approximation, smaller EP transport was found! 
Importance of avalanches!
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ITER, 15MA ‘standard scenario’

sea of weakly unstable TAEs expected with small EP transport

HAGIS/LIGKA [Schneller 2016]

ITER 15MA, nominal α-particle density



Advanced Courses EP, 2020

boundaries? for artificially reduced damping or higher 
EP pressure gradient, EP avalanches are found

ITER 15MA, α-particle density doubled
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recently confirmed by fully GK non-linear ORB5 simulations

T. Hayward-Schneider [PhD, TUM 2020]

ITER 15MA, α-particle density doubled
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outline

•sources and creation of a super-thermal particle 
population in a hot Tokamak plasma

•the effect of static perturbations
•linear physics of resonant phenomena:

1. Experimental evidence
2. Alfven and Alfven-Acoustic waves 
3. Energetic particle modes
4. n=1 modes

•non-linear phenomena:
5.perturbative regime
6.adiabatic regime
7.non-adiabatic regime
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non-linear dynamics: 1D bump on tail model

a) steady state
b) periodic modulation
c) chaotic regime
d) explosive regime

•electric field of the mode tries to flatten 
distribution function

•relaxation processes (ν) try to re-
establish original distribution function

•depending on the balance between the 
linear drive γL and the damping γd,  four 
regimes with substantially different EP 
transport are found:

→linear mode damping/drive is crucially 
important for non-linear evolution!
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[Berk, Breizman, 1992-96; Lilley,2010]

lecture series by F. Zonca: 
http://www.afs.enea.it/zonca/references/seminars/IFTS_spring10/

http://www.afs.enea.it/zonca/references/seminars/IFTS_spring10/
http://www.afs.enea.it/zonca/references/seminars/IFTS_spring10/
http://www.afs.enea.it/zonca/references/seminars/IFTS_spring10/
http://www.afs.enea.it/zonca/references/seminars/IFTS_spring10/
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complex non-linear dynamics
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[Lilley,2010]

Introduction (cont)

• instability occurs if drive (resonance, gradi-
ents of free energy) is larger than damping
(local, non-local)

• non-linear behaviour (BB-theory):

– steady state
– periodic amplitude modulation
– chaotic regime
– explosive

• many machines see systematic di�erence
between beam driven and ICRH driven non-
linear behaviour; possible explanation: RF
di�usion vs electron drag [Lilley, PRL, 2009]
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Introduction (cont)

• instability occurs if drive (resonance, gradi-
ents of free energy) is larger than damping
(local, non-local)

• non-linear behaviour (BB-theory):

– steady state
– periodic amplitude modulation
– chaotic regime
– explosive

• many machines see systematic di�erence
between beam driven and ICRH driven non-
linear behaviour; possible explanation: RF
di�usion vs electron drag [Lilley, PRL, 2009]
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a) steady state
b) periodic modulation
c) chaotic regime
d) explosive regime
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between beam driven and ICRH driven non-
linear behaviour; possible explanation: RF
di�usion vs electron drag [Lilley, PRL, 2009]
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(local, non-local)

• non-linear behaviour (BB-theory):
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Internal amplitude of frequency sweeping TAE S53

δB
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Figure 6. Evolution of mode amplitude for the cases γL/ω0 = 0.027, γd/ω0 = 0.02 and
γL/ω0 = 0.0045, γd/ω0 = 0.004. The horizontal dashed lines are the theoretically predicted
values of δBr/B0.

Figure 7. Sliding Fourier spectrum showing frequency evolution of marginally unstable TAE mode
in response to kinetic α-particle drive (γL/ω0 = 0.027) and external damping (γd/ω0 = 0.02).
The over-plotted white line shows the theoretically predicted frequency shift of 0.4γL(γdt)

1/2.

Reducing the kinetic α-particle drive by reducing their pressure so that ⟨βf⟩ = 7.5 × 10−5

results in a linear growth rate of γL/ω0 = (4.5±0.5)×10−3 . Introducing an external damping
rate, γd/ω0 = 4 × 10−3 makes this mode marginally unstable and again leads to a frequency
sweeping regime but with smaller δω as shown in figure 8. The over-plotted white line is again
the predicted frequency sweeping and shows good agreement with the theory for the frequency
sweeping of the hole.

4. Results

In this section the HAGIS code is used to determine the mode amplitude of a frequency
sweeping global mode in the analytically demanding geometry of the tight aspect-ratio MAST
tokamak. The experimentally observed frequency sweeping measured with magnetic coils
near the edge of the plasma boundary is shown in figure 9. A mode number analysis using a

HAGIS [Pinches, 2008]

complex non-linear dynamics

holes and clumps form in 
phase space and propagate 
while modifying the mode 

frequency
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Bump on tail - Basic ingredients

Page 8

� Particle injection and effective collisions, �eff, create an inverted 
distribution of energetic particles F0(v)

� Discrete spectrum of unstable electrostatic modes

� Instability drive, �L ~ dF0/dv, due to wave-
����������	��������-
kv=0)

� Background dissipation rate, �d, determines the critical gradient 
for the instability

v

F0
Critical slope
�L= �d

kv-�

kx- �t

v=�/k

B�

Separatrix

Pure drag � No steady state

Page 22

Holes grow

Clumps die

Lilley et.al PoP, 17, 092305 (2010)

phase space structures

[M Lilley, 2009...]

Low collisionality � Frequency chirping

Page 10

�����

low collisionality:

add pure electron 
drag:
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Slightly increased density: γd becomes larger, as well as     .  

dedicated experiments at ASDEX Upgrade (BAE)

qualitative theoretical prediction correct [Ph. Lauber, I Classen, IAEA TCM meeting 2011] 
quantitative modeling challenging:  phase space resolution!
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diagram for a wide range of parameters, we do not wish to
rely on this condition a priori. When !s !!Bs, collisions
are strong enough to compete with trapping such that linear
rates are recovered (it is the ‘‘quasilinear regime’’). It
is reasonable to average these two limits to obtain the

regimes corresponding to intermediate values of !"
s ¼

!s=!Bs, hence to use a reduction factor of the form
"!"

s=ð1 þ "!"
sÞ asymptotically equal to "!"

s for small
values of !"

s and to 1.0 for large values of this parameter.
In this way, the degeneracy of Eq. (3) is removed.
Accordingly, the evolution of the mode amplitude (ex-
pressed here in terms of !2

Bb / E) close to a saturation
point (where d=dt' !Bs, s ¼ e, d) follows Eq. (6),

d!2
Bb

dt
¼ !2

Bb½Eð!BbÞ ) Dð!BbÞ*; (6)

with

E ð!BbÞ +
"!e

!Be þ "!e
#e;

Dð!BbÞ +
"!d

!Bd þ "!d
#d þ !b:

(7)

Steady-state saturation is possible if positive solutions exist
for the second order equation in !Bb, d=dt¼ 0. When
#L + #e ) #d ) !b > 0, that is in the linear unstable re-
gion, it always has a positive solution. In the subcritical
region, positive solutions exist under the conditions that

#NL + !"
eð#e ) !bÞ ) !"

dð#d þ !bÞ> 0 (8)

and

! + ð#NLÞ2 ) 4!"
e!

"
d!bj#Lj> 0: (9)

More exactly, in the subcritical case, Eq. (6) has two

positive solutions !,
Bb ¼ ð "#NL ,

ffiffiffiffi
"!

p
Þ=!b, where "#NL +

#NL=!Bb and "! + !=!2
Bb are amplitude independent. It is

easy to see that E0 ) D0 is positive for the lower solution
and negative for the upper one, which is consequently the
only stable solution. Finally, when !"

e > !"
d and !b ' #e,

#d, Eqs. (8) and (9) allow for the existence of metastable
modes, and Eq. (8) is close to our previous intuition. This
confirms that the driving and damping species properties
involved in the !"

s parameters need to be considered for
stability analysis. In particular, in the bump-on-tail prob-
lem (where collisionalities and masses are the relevant
properties), the roles of mass and density (which appeared
in !ps in the linear analysis) are decorrelated nonlinearly.
Interestingly, the present model allows for the existence of
steady-state modes in the entire linearly stable region,
which is in agreement with the fixed #d model. It can be
noted that both the consideration of the background dis-
sipation or the one of the large collisions for resonant
particles would have been sufficient to remove the degen-
eracy of Eq. (3), but that none of the two effects kept alone
allows for steady-state regimes in the whole linear region.
In Fig. 2 the region where steady-state modes are pos-

sible is displayed [given by Eqs. (8) and (9)] using #e and
#d defined by Eq. (5). In this figure, the initial magnitude is
!Bðt¼ 0Þ ¼ 0:2, and was chosen large enough to avoid
strong modification of the diagram for larger !Bðt¼ 0Þ.
The simulated metastable regimes are obviously in
good agreement with the analytic nonlinear threshold.

FIG. 1 (color online). Nonlinear states obtained when varying
(!2

pd, !e) for fixed values of md=ml ¼ 2:0, !d ¼ 0:04 and for a

large initial perturbation !Bbðt¼ 0Þ ¼ 0:2. Four behaviors are
distinguished, illustrated with the time evolution of their ampli-
tude (given as a function of !Bb) for four particular sets of
parameters: ð!2

pd;!eÞ ¼ ð0:03; 0:063Þ in (1), ð0:09; 0:016Þ in (2),

ð0:15; 0:002Þ in (3), and ð0:15; 0:040Þ in (4). The linear threshold
is calculated numerically from Eq. (4).

FIG. 2 (color online). Nonlinear states obtained when varying
the parameters (!pd, !e), for fixed values of md=ml ¼ 0:5,
!d ¼ 0:005, and for the initial perturbation !Bbðt¼ 0Þ ¼ 0:2.
The classification of states is the same as in Fig. 1.
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pd, !e) for fixed values of md=ml ¼ 2:0, !d ¼ 0:04 and for a

large initial perturbation !Bbðt¼ 0Þ ¼ 0:2. Four behaviors are
distinguished, illustrated with the time evolution of their ampli-
tude (given as a function of !Bb) for four particular sets of
parameters: ð!2

pd;!eÞ ¼ ð0:03; 0:063Þ in (1), ð0:09; 0:016Þ in (2),

ð0:15; 0:002Þ in (3), and ð0:15; 0:040Þ in (4). The linear threshold
is calculated numerically from Eq. (4).

FIG. 2 (color online). Nonlinear states obtained when varying
the parameters (!pd, !e), for fixed values of md=ml ¼ 0:5,
!d ¼ 0:005, and for the initial perturbation !Bbðt¼ 0Þ ¼ 0:2.
The classification of states is the same as in Fig. 1.
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Figure 5. (a) Time series of electric field amplitude and (b), (c), (d)
spectrograms for typical solutions with long-lived hole, with
γd/γL0 = 0.5. The parameters are νf/γL0 = 0.36, νd/γL0 = 0.27 for
steady hole (b), νf/γL0 = 0.16, νd/γL0 = 0.09 for wavering hole (c)
and νf/γL0 = 0.16, νd/γL0 = 0.12 for oscillatory hole (d). Inset:
zoom over a few oscillation periods of the amplitude. Each
simulation corresponds to a point in figure 9.

predicted by linear theory, we can conclude that the growth of
the wave is nonlinear. This nonlinear instability with γ > 0
is observed for the first time. For νf = νd = 0.05 γL0, we
observe nonlinear instabilities when γ /γL0 < 0.04. In the
same way as in the subcritical regime, the stability depends
on the initial perturbation amplitude. A consequence for
experiments is that, in both subcritical and supercritical cases,
the wave saturates to a high level ωb ∼ γL much sooner than
what linear theory predicts (γLt ∼ 103 instead of 108 for this
explosive case and 102 instead of ∞ for the subcritical case).
The mechanisms of subcritical and supercritical nonlinear
instabilities seem to be the same, which will be explained
in a future work. In a long-time point of view though, after
nonlinear saturation, the chirping behaviour does not depend
on the initial amplitude. The case in figure 4(c) is not a
new regime, rather an intermittent chirping case. Although
nonlinear instabilities require large seed perturbations, they
are relevant to experiments, where changes in equilibrium
profiles may bring a linearly unstable wave, which is saturated
to a relatively large amplitude, to a linearly stable state. If
the system alternates between supercritical and subcritical
regimes, hysteresis is expected.

0.05

0.1

0.2

0.5

1

2

5

 0  0.2  0.4  0.6  0.8  1  1.2

ν d
 / 

γ L
0

γd / γL0

J

Linear stability threshold

Steady-state threshold

Steady/periodic threshold

Damped

Steady

Periodic

Chaotic

Periodic chirping

Bursty chirping

Intermittent chirping

Chaotic chirping

Steady hole

Oscillatory hole

Wavering hole

Upward chirping dominant

Downward chirping dominant

Upward chirping only

Downward chirping only

Hooked

Figure 6. Behaviour bifurcation diagram for γL0 = 0.1 and
νd/νf = 5. The classification of each solution is plotted in the
(γd, νd) parameter space. The legend is shared between figures 6– 9.
An absence of point signifies that longer, or better resolved
simulations are necessary to categorize the time-asymptotic
behaviour. The letter J indicates the JT-60U discharge E32359.

3.3. Small drag

To investigate the regime of small drag, we perform a series
of 260 simulations where νd/νf = 5, which is relevant to
present-day tokamaks [23]. Figure 6 shows the categorization
of each simulation result in the (γd, νd) parameter space. The
linear growth rate γ is obtained by solving the eigenvalue
problem corresponding to the linearized model equations.
Note the agreement between the linear stability threshold
γ = 0 and the boundary between linearly stable and unstable
simulations. This phase diagram is qualitatively similar to
what was obtained with Krook collisions. We recover the same
bifurcations from steady, to periodic, to chaotic, to chirping
as the collision frequencies decrease. We do not observe
chirping solutions for γd/γL0 < 0.1. The main difference is
that chirping solutions can be intermittent, bursty or periodic,
whereas we only observed chaotic chirping in the Krook case.
We observed that several holes and clumps with different
amplitudes coexist in the Krook case, while diffusion smooths

6

Figure 17: Left: behaviour bifurcation diagram for �L/⇤0 = 0.1 and the dynamical friction/diffusion ratio
⇥d/⇥f = 5. The classification of each solution is plotted in the (�d, ⇥d) parameter space. The letter J
indicates the JT-60U discharge E32359 [183]. Right: classification of non-linear states as a function of the
normalised bulk plasma frequency and the collision rate ⇥e [184].

out of the wave resonance[19], non-linear coupling of modes with different n [40],
coupling to the zonal flow component [40], and ion Compton scattering off the thermal
ions [188].
If the system is far above the stability threshold, there may be enough energy available

(usually due to a steep enough radial EP-gradient) to destabilise the strongly damped
EPMs [169, 190]. The linear onset condition for EPMs has been shown to be close to
the threshold for ’ballistic’ EP transport [191]. That means that the EP redistribution
can occur in avalanche-like events (for experimental evidence see refs. [180, 192]),
where an unstable front is convectively amplified as is moves radially outwards (see
fig. 18) [189, 193]. Here, the adiabaticity condition is violated, i.e. d�

dt � ⇥2
b . Both the

radial gradient and the mode structure change on a very fast time scale (typically 100-
200 Alfvén times, tA = R0/vA0) and therefore no stochastisation of particle orbits in
phase space can take place.
Unfortunately, the story complicates significantly, when more than one mode are un-
stable. In fact, except for very steep gradients, the transport of a single mode is
practically negligible: below the amplitude threshold �Br/B � 10�3, the trans-
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beyond the ‘adiabatic’ regime:

an explosive regime [170]. Experimentally, all four regimes are observed in many de-
vices [173, 174, 175] and can be modeled numerically [176, 177]. These calculations
demonstrate that the resonant wave leads to phase space structures, i.e. ‘holes’ and
‘clumps’ in the EP distribution function.
Furthermore, it turns out that there is an interesting difference - confirmed by many
experimental studies - between ICRH driven and NBI driven modes: whereas in the
first case the behaviour tends to move from ‘steady state’ to ‘periodic’ and ‘stochastic’,
in the latter case it directly moves from ‘steady state’ to ‘explosive’. This difference
was recently explained by adding dynamical friction (NBI) as an additional relaxation
mechanism to the original model [178, 179]. It should be noted and emphasised that
the linear properties like damping and drive govern the non-linear dynamics, except in
the very hard non-linear limit where |�/⇥| > 10�2. Also this regime has been ob-
served experimentally at JT-60U [180], NSTX[181] and MAST [182].
Performing long time simulations of the bump-on-tail model made it possible to clas-
sify more subcategories of non-linear behaviour. Fig. 17 shows the rich phenomenol-
ogy for parameters describing a cold bulk plasma with beam-like EPs whose distri-
bution function has a constant slope around the resonant velocity [179]. Choosing
carefully experimentally relevant parameters allows one to e.g. infer damping rates
from relating the experimental behaviour to the simulations.

Although this procedure turned out to be very successful, there are obviously sev-
eral caveats: a direct correspondence of the simple model to the experimental situation
has not been established, only single mode resonances can be treated, and processes
not included in the model such as scattering due to the background turbulence may
change the qualitative interpretation. An important extension of the model is to take
into account not only the change of drive but also the change of damping during the
non-linear phase [184]: when a linearly unstable mode grows, resonant particles get
trapped in the wave and bounce inside the phase space structure. This reduces the res-
onant drive[185, 186]. Adding a second (damping) species to the model accounts for
the non-linear reduction of damping. This leads to metastable, e.g. linearly stable but
non-linearly unstable states (see fig. 17, right).
In order to describe the fast movement of the mode far away from the original mode fre-
quency a recently developed analytical formulation using a Bernstein-Greene-Kruskal
mode ansatz instead of slowly evolving eigenmode can be employed[187]. Even though
this model includes a non-linear modification of the mode structure, the applicability
is limited by the adiabaticity constraint d�

dt � ⇥2
b , i.e. the assumption that the particles

trapping time is long compared to the sweeping rate of the mode. This condition that
is fulfilled near marginal stability and that underlays all work mentioned so far in this
section is equivalent to the constraint that the non-linear radial displacement of a reso-
nant particle orbit has to be small compared to the radial mode width. Therefore, also
non-local effects like equilibrium or profile changes cannot be accounted for.
As a consequence of the particle-wave trapping, the gradient of the distribution func-
tion relaxes and the mode saturates. During this process, particles lose energy and/or
toroidal momentum, i.e. they are transported radially outwards. Also the crossing of
topological boundaries, e.g. passing to trapped, contributes to the transport and can
even be dominant in certain regimes. However, there are other types of saturation
mechanisms that influence the final saturation amplitude: turbulent scattering of EPs
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Figure 6. Power spectra of scalar-potential fluctuations in the (r/a, ω/ωA0) plane with the shear
Alfvén continuous spectrum superimposed (top), βH profiles (middle) and radial profiles of the m, n
Fourier components of the fluctuating scalar potential (in units of TH /eH , with eH being the electric
charge of the energetic particles, bottom) for the RS ITER-FEAT scenario (βH0 = βH0,nom), at
three different stages: linear growth (left), end of the avalanche phase (centre), saturated phase
(right). The slight departure, in the linear-growth phase, of the on-axis βH from its initial value,
βH0, is due to the relaxation process discussed at the end of section 2.

of the radial gradient of the energetic-particle profile occurs along with the magnitude of
the maximum gradient itself. The steepening of the gradient and the rapid outward shift
of the maximum-gradient radial position characterize the avalanche (convective) phase as an
unstable propagating front. The following, slower, decay of the maximum-gradient magnitude
corresponds to the saturated (diffusive) phase.

To quantify the convection generated by the nonlinear EPM evolution, we introduce the
quantity (r/a)y, defined as the radial surface enclosing the fraction y of the energetic-particle
energy content and given implicitly by

y =
∫ (r/a)y

0 xβH (t, x) dx
∫ 1

0 xβH,init(x) dx
(1)

Figure 18: Radial structure of a typical EPM scalar potential fluctuation, with n = 2 and decomposed in
(toroidally coupled) poloidal Fourier harmonics m = 1� 11. The radial envelope of the EPM wave-packet
propagates radially as time progresses from left to right. Here, time is given in units of tA = R0/vA0 [189]
(numerical results obtained with the HMGC code [41]).

port of a single mode is convective and scales linearly with ⇥Br/B, whereas above
this threshold, it scales with (⇥Br/B)2 due to stochastic diffusion in phase space
[194, 195, 196]. For multi-mode scenarios this threshold can be substantially lower,
typically ⇥Br/B < 10�4. This behaviour has been directly measured with fast ion
loss probes at CHS [197] and ASDEX Upgrade [198]. The latter experiments have
been successfully modeled with the HAGIS code (extended with a vacuum region)
[44, 199], identifying prompt, convective, and stochastic losses. Also the role of parti-
cles resonant with more than one mode in the linear phase and so-called ‘phase space
channeling’ due to two modes with different frequencies were investigated (see fig.
19) [200, 201]. The expression ‘phase space channelling’ comes from the idea of ‘�-
particle channelling’ introduced first for the case of the interaction of �-particles with
intense lower hybrid waves [202, 203]. The amplitude evolution of two modes (core
localised RSAE at s = 0.3;TAE at s = 0.5) as shown in fig. 19 (right) gives also a nice
example for the importance of subdominant modes: although in the linear phase the
TAE grows much slower, it eventually reaches a high amplitude due to the EP profile
modification caused by the RSAE. The losses at mid a low energies only occur if both
modes have grown to large amplitudes.
Recently, the first non-linear results with global electromagnetic codes originally de-

signed for turbulence were obtained for single mode cases [99, 100, 204, 205, 206, 96].
Although this progress is remarkable and the only way to a self-consistent treatment
of Alfvénic turbulence, i.e. a regime where the background turbulence can interact
effectively with EP driven mode, the hybrid models remain important: due to compu-
tational limitations, hybrid models [207, 48, 39, 199] are nowadays (and will remain
for a while) the only possibility for realistic and long-term simulations on the transport
time scales.
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beyond the ‘adiabatic’ regime:

adiabatic:

an explosive regime [170]. Experimentally, all four regimes are observed in many de-
vices [173, 174, 175] and can be modeled numerically [176, 177]. These calculations
demonstrate that the resonant wave leads to phase space structures, i.e. ‘holes’ and
‘clumps’ in the EP distribution function.
Furthermore, it turns out that there is an interesting difference - confirmed by many
experimental studies - between ICRH driven and NBI driven modes: whereas in the
first case the behaviour tends to move from ‘steady state’ to ‘periodic’ and ‘stochastic’,
in the latter case it directly moves from ‘steady state’ to ‘explosive’. This difference
was recently explained by adding dynamical friction (NBI) as an additional relaxation
mechanism to the original model [178, 179]. It should be noted and emphasised that
the linear properties like damping and drive govern the non-linear dynamics, except in
the very hard non-linear limit where |�/⇥| > 10�2. Also this regime has been ob-
served experimentally at JT-60U [180], NSTX[181] and MAST [182].
Performing long time simulations of the bump-on-tail model made it possible to clas-
sify more subcategories of non-linear behaviour. Fig. 17 shows the rich phenomenol-
ogy for parameters describing a cold bulk plasma with beam-like EPs whose distri-
bution function has a constant slope around the resonant velocity [179]. Choosing
carefully experimentally relevant parameters allows one to e.g. infer damping rates
from relating the experimental behaviour to the simulations.

Although this procedure turned out to be very successful, there are obviously sev-
eral caveats: a direct correspondence of the simple model to the experimental situation
has not been established, only single mode resonances can be treated, and processes
not included in the model such as scattering due to the background turbulence may
change the qualitative interpretation. An important extension of the model is to take
into account not only the change of drive but also the change of damping during the
non-linear phase [184]: when a linearly unstable mode grows, resonant particles get
trapped in the wave and bounce inside the phase space structure. This reduces the res-
onant drive[185, 186]. Adding a second (damping) species to the model accounts for
the non-linear reduction of damping. This leads to metastable, e.g. linearly stable but
non-linearly unstable states (see fig. 17, right).
In order to describe the fast movement of the mode far away from the original mode fre-
quency a recently developed analytical formulation using a Bernstein-Greene-Kruskal
mode ansatz instead of slowly evolving eigenmode can be employed[187]. Even though
this model includes a non-linear modification of the mode structure, the applicability
is limited by the adiabaticity constraint d�

dt � ⇥2
b , i.e. the assumption that the particles

trapping time is long compared to the sweeping rate of the mode. This condition that
is fulfilled near marginal stability and that underlays all work mentioned so far in this
section is equivalent to the constraint that the non-linear radial displacement of a reso-
nant particle orbit has to be small compared to the radial mode width. Therefore, also
non-local effects like equilibrium or profile changes cannot be accounted for.
As a consequence of the particle-wave trapping, the gradient of the distribution func-
tion relaxes and the mode saturates. During this process, particles lose energy and/or
toroidal momentum, i.e. they are transported radially outwards. Also the crossing of
topological boundaries, e.g. passing to trapped, contributes to the transport and can
even be dominant in certain regimes. However, there are other types of saturation
mechanisms that influence the final saturation amplitude: turbulent scattering of EPs

37

i.e. particles are trapped long in the wave compared to 
frequency chirp
if violated, the wave can saturate in a few bounce times: 
ballistic radial transport can occur:

an explosive regime [170]. Experimentally, all four regimes are observed in many de-
vices [173, 174, 175] and can be modeled numerically [176, 177]. These calculations
demonstrate that the resonant wave leads to phase space structures, i.e. ‘holes’ and
‘clumps’ in the EP distribution function.
Furthermore, it turns out that there is an interesting difference - confirmed by many
experimental studies - between ICRH driven and NBI driven modes: whereas in the
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Although this procedure turned out to be very successful, there are obviously sev-
eral caveats: a direct correspondence of the simple model to the experimental situation
has not been established, only single mode resonances can be treated, and processes
not included in the model such as scattering due to the background turbulence may
change the qualitative interpretation. An important extension of the model is to take
into account not only the change of drive but also the change of damping during the
non-linear phase [184]: when a linearly unstable mode grows, resonant particles get
trapped in the wave and bounce inside the phase space structure. This reduces the res-
onant drive[185, 186]. Adding a second (damping) species to the model accounts for
the non-linear reduction of damping. This leads to metastable, e.g. linearly stable but
non-linearly unstable states (see fig. 17, right).
In order to describe the fast movement of the mode far away from the original mode fre-
quency a recently developed analytical formulation using a Bernstein-Greene-Kruskal
mode ansatz instead of slowly evolving eigenmode can be employed[187]. Even though
this model includes a non-linear modification of the mode structure, the applicability
is limited by the adiabaticity constraint d�

dt � ⇥2
b , i.e. the assumption that the particles

trapping time is long compared to the sweeping rate of the mode. This condition that
is fulfilled near marginal stability and that underlays all work mentioned so far in this
section is equivalent to the constraint that the non-linear radial displacement of a reso-
nant particle orbit has to be small compared to the radial mode width. Therefore, also
non-local effects like equilibrium or profile changes cannot be accounted for.
As a consequence of the particle-wave trapping, the gradient of the distribution func-
tion relaxes and the mode saturates. During this process, particles lose energy and/or
toroidal momentum, i.e. they are transported radially outwards. Also the crossing of
topological boundaries, e.g. passing to trapped, contributes to the transport and can
even be dominant in certain regimes. However, there are other types of saturation
mechanisms that influence the final saturation amplitude: turbulent scattering of EPs
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Figure 5. Nonlinear mode evolution in the case with βh0 = 1.5%. (a )–(c) show the evolution of the n = 1 fluctuation amplitude, its
frequency, and the radial location of the peak in the ES potential fluctuation. The CA phase, −100 ! t − t0 ! 0, is shaded yellow. The
results in (b ) and (c) were obtained from an analysis of the power spectra, several snapshots of which are shown on the right-hand side and
are labelled (A)–(F). Here, the continua (white dots) are plotted only in the slow-sound approximation (see figure 4).
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Figure 6. Time traces of nonlinear Alfvén mode fluctuations for five cases in the range 0.75% " βh0 " 2.25%. ((a ), (d ), (g), (h), (m))
Nonlinear evolution of the n = 1 fluctuation amplitude. ((b ), (e), (h), (k), (n)) Frequency at the location of strongest ES potential
fluctuation. ((c), (f ), (i), (l), (o)) Radial location of the strongest ES potential fluctuation. The CA phase is shaded.

During the subsequent evolution, the fluctuations continue
to move in the (r, ω) plane, and they appear and disappear in
different parts of the (r, ω) plane, as shown in snapshots (B)–
(E). The entire burst lasts for a period of about #tburst ≈ 400
Alfvén times, which corresponds to about 0.3 ms.

When the fluctuations have decayed to a lower amplitude,
very rapid repeated frequency sweeping both up and down
along the m = 2 shear Alfvén continuum is observed. This
is indicated in figure 5(b ) and some details are shown in
snapshots (E) and (F). Note that the time traces in figure 5(b )
follow only the dominant fluctuation, so only the frequency
up-sweep is visible here. The presence of a weaker down-
sweeping component is clearly visible in snapshot (F). The
interval between sweeps is only 60 Alfvén times (50 µs),
which corresponds to two mode oscillation cycles. This is
about 10 times faster than the frequency sweeping observed in

conjunction with so-called fast-frequency sweeping modes that
occur between ALEs (for simulation results, see figure 8 in [8]).
The processes underlying the rapid frequency sweeping seen in
figure 5 remain to be examined. In any case, these observations
are consistent with the broad-band fluctuations (30 kHz ! ν !
70 kHz) observed during ALEs in experiments.

Figure 6 shows the temporal evolution of the fluctuation
amplitude, frequency and radial location of the dominant wave-
packet for a range of fast ion beta values, 0.75% ! βh0 !
2.25%. For βh0 " 1%, one can clearly identify CA phases.
Even forβh0 ≈ 0.75%, a small radial excursion of the mode can
be seen during the final phase of mode growth. The strength
of CA appears to grow gradually with increasing βh0. This is
discussed in more detail in section 4.

Note that in figure 6(o) the radial outward shift of the
mode during the CA in the case βh0 " 2.25% does not
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Figure 3. Time traces of plasma parameters of E43014: (a) plasma
current, IP, and beam injection power of N-NB and P-NB #7, #14
for diagnostics of q-profile and ion temperature, respectively. The
beam energies of N-NB and P-NB #7, #14 are ∼387 keV and
∼87 keV, ∼84 keV, respectively. (b) Frequency spectrum of
magnetic fluctuations and (c) amplitude of magnetic fluctuations
with frequency of 20–80 kHz.

of the plasma current and the injected N-NB and P-NB power.
Figures 3(b) and (c) show the time traces of the frequency
spectrum and mode amplitude with a frequency of 20–80 kHz,
respectively. At t = 4.6 s, ne(0) ∼ 2.2 × 1019 m−3, Te(0) ∼
1.8 keV, Ti(0) ∼ 1.9 keV, q(0) = 1.3 and Zeff ∼ 2.1, where
ne(0), Te(0), Ti(0) and q(0) are the electron density, electron
temperature, ion temperature and safety factor at the plasma
centre and Zeff is the effective charge, respectively. Bursting
modes called fast FS modes and ALEs induced by N-NB
injection are observed as shown in figures 3(b) and (c). Fast FS
modes have a time scale of 1–5 ms and their frequency chirps
towards both the upper and lower sides. On the other hand,
ALE has a time scale of 200–400 µs and its amplitude is large
with δB/B ∼ 10−4 near the first wall. So far, the occurrence
of ALEs has induced a large drop in the total neutron emission
rate with ∼10%, and its drop has been considered to be caused
by the energetic ion transport [8].

The time traces of the neutron emission rate during N-NB
injection are shown in figure 4 together with the line averaged
electron density and the magnetic fluctuation amplitude.
Figure 4(a) shows the time trace of the total neutron emission
rate. Figure 4(b) shows the time traces of the neutron emission
rate of each channel measured by the neutron emission profile
monitor with the innermost channel at the top. The time trace of
line averaged electron density is shown in figure 4(c). The
magnetic fluctuation amplitude shown in figure 4(d ) is the
same as that shown in figure 3(c). During ALEs the total
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Figure 4. Neutron signals during the occurrence of ALEs in the
E43014 shot. (a) Total neutron emission measured by fission
chamber. (b) Signals of the neutron emission profile monitor. The
innermost channel is shown on top. (c) Line averaged electron
density. (d ) Amplitude of magnetic fluctuations.

neutron emission rate is either increased or reduced slightly, but
after ALEs the total neutron emission rate reduces significantly
(∼10%) for a time period of 10–20 ms as shown in figure 4(a).
Figure 4(b) shows that the neutron emission signals from the
central region (r/a < 0.46) reduce, while signals from the
peripheral region (r/a > 0.64) increase after ALEs. This
suggests that the energetic ion density profile is redistributed
due to ALEs. When ALEs occurred, the line average ñe

reduced slightly (∼3%). However, the reduction rate of ñe

was much smaller than that of the total neutron emission rate.
This indicates that changes in neutron emission rate were not
dominantly due to the change in bulk plasma density. Figure 5
shows the time traces of mode amplitude and neutral particle
fluxes in energy windows of (a) 20–100 keV, (b) 100–200 keV,
(c) 200–300 keV, and (d ) 300–400 keV during N-NB injection,
respectively. The enhancement of the neutral particle flux with
the energy of 100–400 keV by ALEs can be clearly observed.
On the other hand, the neutral particle flux with the energy
of 0–100 keV is not enhanced. These results indicate that
ALEs cause the transport of energetic ions in a limited energy
range. So far, the changes in the neutral particle fluxes due to
ALEs have been obtained [8]. However their detailed energy
distribution could not be obtained, and the distribution in a
low energy range less than 160 keV was unknown. In this
work, the analysis of the energetic ion transport with detailed
energy distribution of neutral particles in the most full energy
region between 20 and 500 keV becomes possible because
of the introduction of the NDD [12]. In contrast with this,
figure 6 shows the time traces of the neutral particle flux in
the same energy windows as shown in figure 5 for the H-
mode plasma with ITB during N-NB injection (E43015). In
this discharge, a mini-collapse occurred at t ∼ 8.56 s in the
transition phase from L-mode to H-mode. The enhancement
of neutral particle flux is observed in all energy windows due
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• n=1 TAE bursts seem to trigger 
EGAMs

• other modes seen at intermediate 
frequencies

0.70     0.71     0.72     0.73    0.74
time[s]

Alfvén eigenmode experiments

Table 1. Fast ion parameters for the experiments with the neutral beam injection in TFTR, DIII-D and JT-60U, and for the expected ITER α
experiment.

Parameter P-NB (TFTR) P-NB (DIII-D) N-NB (JT-60U) α (ITER)

Pf (0) (MW m−3) —a 3b 2.1c 0.12d 0.12e 0.3
δ/af 0.2a 0.05b 0.3c,g 0.47d,g 0.34d,g 0.05

(0.16) (0.1)
nf(0)/ne(0) (%) —a 13b 16c 4d 2e 0.3
βf(0) (%) 0.5a 0.9b 7.5c 1.5d 0.65e 0.7
⟨βf⟩ (%) —a 0.4b 1.1c 0.3d 0.15e 0.2
max |R grad βf | 0.07a 0.04b 0.4c 0.2d 0.06e 0.06
vf/vA(0) 1.0a 0.35b 1.3c 1.15d 1.95e 1.9

a Discharge in [1]. The volume-averaged power: ⟨Pf⟩ = 0.53 MW m−3.
b Discharge #76770 in [12].
c Discharge #71524 in [13] and [14].
d Discharge E36378.
e Discharge E35651.
f Orbit shift from magnetic flux surface for banana particles: δ = q(R/r)1/2ρf , and ρf is the fast particle Larmor radius for
the toroidal magnetic field.
g Full speed is used for ρf . However, the particle shift is small in the case of the tangential beam injection. The value in a
parenthesis shows %/a, where % is the orbit shift from magentic flux surface for passing particles: % = qρf . In JT-60U,
N-NB is injected in the co-direction to the plasma current and the toroidal field, Rtan/R ∼ 0.78. Here Rtan is the tangency
radius of the N-NB injection and R is the major radius of the plasma magnetic axis.

emission profile has been measured during the occurrence of
the bursting modes. The measured temporal evolution implies
the redistribution of energetic ions by the modes. And we will
summarize this paper in section 4.

2. Characteristics of temporal evolution and
saturation of fast FS mode and ALE

We have performed AE experiments by using N-NB injection
in the following parameter regime: a plasma current, 0.6 !
Ip ! 1.8 MA; a toroidal field, 1.2 ! Bt ! 3.6 T (Ip = 0.6 MA,
Bt = 1.2 T in most experiments); a power of N-NB, 2 !
PN-NB ! 6 MW; an energy of N-NB 340 ! EN-NB ! 400 keV;
0.1% " ⟨βf⟩ " 1% and 0.4 " vb∥/vA " 1.5. Here, ⟨βf⟩ is
a volume-averaged fast ion beta. Figure 1 shows the typical
time traces of the plasma parameters and the magnetic fluctu-
ations. Figure 1(a) shows the time trace of a plasma current,
the power of the N-NB and the power of the P-NB. Figure 1(b)
shows the time trace of frequency spectrum of a magnetic
probe signal, thus vertical axis is frequency, and figure 1(c)
shows the time trace of the mode amplitude with frequency
of 30–70 kHz. We can see bursting modes in figures 1(b) and
(c). The bursting modes in JT-60U are observed even with a
small amount of the volume-averaged fast ion beta of ∼ 0.1%.
Figure 2 is an extended view of figure 1(b) during the period of
4.32 < t < 4.38 s. We can find three kinds of modes in these
figures. The first mode is a slow frequency-sweeping (slow FS)
mode, which appears with a frequency of about 30 kHz at about
3.8 s and its frequency chirps up to 65 kHz at about 4 s. The
slow FS mode appears below the TAE gap and its frequency in-
creases up to the TAE gap. This slow FS mode is thought to be
energetic particle mode (EPM) [15]/resonant TAE (RTAE) [16]
which connects to a kinetic ballooning mode branch based on
HINST analysis [17]. The second one is a fast frequency-
sweeping (fast FS) mode. The fast FS mode consists of bifur-
cating branches with the same start frequency which lies in the
TAE gap. Each branch changes its frequency by 10–20 kHz in
1–5 ms. The fast FS mode cannot be explained by equilibrium
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Figure 1. (a) Time traces of Ip, power of N-NB and P-NB. The beam
energy of N-NB is 360 keV. Bt = 1.2 T. (b) A time trace of frequency
spectrum of magnetic fluctuations measured by Mirnov coils at
the first wall on a midplane. (c) A time trace of the mode amplitude
with frequency of 30–70 kHz. (d ) A time trace of the Dα signal.

change. The third mode is an abrupt large-amplitude event
(ALE) with a timescale of 200–400 µs. The amplitude of ALE
reach B̃θ/Bθ ∼ 10−3 at the first wall. Here, Bθ is a magnetic
field to the poloidal direction in the tokamak coordinate. ALEs

943

Alfvén eigenmode experiments

Table 1. Fast ion parameters for the experiments with the neutral beam injection in TFTR, DIII-D and JT-60U, and for the expected ITER α
experiment.

Parameter P-NB (TFTR) P-NB (DIII-D) N-NB (JT-60U) α (ITER)

Pf (0) (MW m−3) —a 3b 2.1c 0.12d 0.12e 0.3
δ/af 0.2a 0.05b 0.3c,g 0.47d,g 0.34d,g 0.05

(0.16) (0.1)
nf(0)/ne(0) (%) —a 13b 16c 4d 2e 0.3
βf(0) (%) 0.5a 0.9b 7.5c 1.5d 0.65e 0.7
⟨βf⟩ (%) —a 0.4b 1.1c 0.3d 0.15e 0.2
max |R grad βf | 0.07a 0.04b 0.4c 0.2d 0.06e 0.06
vf/vA(0) 1.0a 0.35b 1.3c 1.15d 1.95e 1.9

a Discharge in [1]. The volume-averaged power: ⟨Pf⟩ = 0.53 MW m−3.
b Discharge #76770 in [12].
c Discharge #71524 in [13] and [14].
d Discharge E36378.
e Discharge E35651.
f Orbit shift from magnetic flux surface for banana particles: δ = q(R/r)1/2ρf , and ρf is the fast particle Larmor radius for
the toroidal magnetic field.
g Full speed is used for ρf . However, the particle shift is small in the case of the tangential beam injection. The value in a
parenthesis shows %/a, where % is the orbit shift from magentic flux surface for passing particles: % = qρf . In JT-60U,
N-NB is injected in the co-direction to the plasma current and the toroidal field, Rtan/R ∼ 0.78. Here Rtan is the tangency
radius of the N-NB injection and R is the major radius of the plasma magnetic axis.

emission profile has been measured during the occurrence of
the bursting modes. The measured temporal evolution implies
the redistribution of energetic ions by the modes. And we will
summarize this paper in section 4.

2. Characteristics of temporal evolution and
saturation of fast FS mode and ALE

We have performed AE experiments by using N-NB injection
in the following parameter regime: a plasma current, 0.6 !
Ip ! 1.8 MA; a toroidal field, 1.2 ! Bt ! 3.6 T (Ip = 0.6 MA,
Bt = 1.2 T in most experiments); a power of N-NB, 2 !
PN-NB ! 6 MW; an energy of N-NB 340 ! EN-NB ! 400 keV;
0.1% " ⟨βf⟩ " 1% and 0.4 " vb∥/vA " 1.5. Here, ⟨βf⟩ is
a volume-averaged fast ion beta. Figure 1 shows the typical
time traces of the plasma parameters and the magnetic fluctu-
ations. Figure 1(a) shows the time trace of a plasma current,
the power of the N-NB and the power of the P-NB. Figure 1(b)
shows the time trace of frequency spectrum of a magnetic
probe signal, thus vertical axis is frequency, and figure 1(c)
shows the time trace of the mode amplitude with frequency
of 30–70 kHz. We can see bursting modes in figures 1(b) and
(c). The bursting modes in JT-60U are observed even with a
small amount of the volume-averaged fast ion beta of ∼ 0.1%.
Figure 2 is an extended view of figure 1(b) during the period of
4.32 < t < 4.38 s. We can find three kinds of modes in these
figures. The first mode is a slow frequency-sweeping (slow FS)
mode, which appears with a frequency of about 30 kHz at about
3.8 s and its frequency chirps up to 65 kHz at about 4 s. The
slow FS mode appears below the TAE gap and its frequency in-
creases up to the TAE gap. This slow FS mode is thought to be
energetic particle mode (EPM) [15]/resonant TAE (RTAE) [16]
which connects to a kinetic ballooning mode branch based on
HINST analysis [17]. The second one is a fast frequency-
sweeping (fast FS) mode. The fast FS mode consists of bifur-
cating branches with the same start frequency which lies in the
TAE gap. Each branch changes its frequency by 10–20 kHz in
1–5 ms. The fast FS mode cannot be explained by equilibrium
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Figure 1. (a) Time traces of Ip, power of N-NB and P-NB. The beam
energy of N-NB is 360 keV. Bt = 1.2 T. (b) A time trace of frequency
spectrum of magnetic fluctuations measured by Mirnov coils at
the first wall on a midplane. (c) A time trace of the mode amplitude
with frequency of 30–70 kHz. (d ) A time trace of the Dα signal.

change. The third mode is an abrupt large-amplitude event
(ALE) with a timescale of 200–400 µs. The amplitude of ALE
reach B̃θ/Bθ ∼ 10−3 at the first wall. Here, Bθ is a magnetic
field to the poloidal direction in the tokamak coordinate. ALEs
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JT-60U: K. Shinohara et al, 2002-2004

n=1 TAE burst seem to have some similarity to ‘fast 
sweeping’ and ‘ALE’ at JT-60U
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summary
• ‘errors’ in the axisymmetric fields of a Tokamak cause particle losses - 

since EP drift orbits are larger than the thermal particle orbits and 
have more energy, they are more dangerous for the first wall

• resonant wave-particle interaction can radially redistribute EPs and 
cause losses 

• the damping and the global mode structure is crucial for the linear 
stability and non-linear saturation of the modes

• the saturation process is very complicated: weakly non-linear and 
strong non-linear regime show very different behaviour due to the 
formation of phase space structures and the formation of ballistic 
avalanches, role of collisions

• role of non-linear mode-mode coupling, excitation of zonal structures
• prediction for ITER/DEMO/HELIAS reactors is challenging - which 

regime is relevant?
• is there overlap between resonant/ballistic core transport and edge 

losses due to static perturbation fields?
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summary/outlook

recent progress on several fronts of model validation for EP physics:

• analytical/ semi-analytical models & reduced models that can make contact to 
analytical descriptions (verification/physics understanding, large parameter range)

• code integration for quantitative predictions (smaller parameter range)
• global EM non-linear GK simulations (restricted parameter range)

experimental ‘opportunities’ for code validation:
• theory/simulation has to drive and trigger experiments for validating models 

(‘exotic’ regimes) at present day machines (JET/TCV/ASDEX Upgrade, West,..)
• MAST Upgrade (EP avalanches, low-n though…)
• W7-X
• JET- DT (1-2 years)
• JT60-SA (energetic NNBI) will play important role within next 10 years
• DTT (intermediate n’s possible)

to be done:  implement EP models in tranport codes (IMAS/WPCD)
(large amount of automatisation required)
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Additional slides



Linear Gyrokinetic model: Qin,Rewoldt, Tang [1999-2006] 
Ph Lauber [2003-2009]

we now take into account terms up to second order in ϵ∆.

Equation (53) is expanded in:
[

{Z̄, H̄1(Z̄, t)} · ∂

∂Z̄

]

Fa0(Z̄) +

[
∂

∂t
+ {Z̄, H̄0(Z̄)} · ∂

∂Z̄

]

fa(Z̄, t) = 0 (59)

Leaving out the higher order terms as described above we obtain [1]:

∂f

∂t
+(Ūb+vd) ·∇f − b

m
·∇H0

∂f

∂Ū
=

cb

eB
· (∇F0×H1)−

b

m
· (∇F0

∂H1

∂Ū
−∇H1

∂F0

∂Ū
) (60)

with

{Z̄, H0} = Ūb + vd (61)

It is useful to write this equation also in a different set of coordinates:

Z̄ = (X̄, H0 = E, µ̄, ξ̄) (62)

Using the modified Poisson brackets given in equation (200) one derives:

∂f

∂t
+ (Ūb + vd) ·∇f =

cb

eB
· (∇F0 ×∇H1) +

∂F0

∂E
(Ūb + vd) ·∇H1 (63)

Here a closer look to the different contributions of the drift terms is helpful [19]: the

curvature drift term is contained in B∗ (defined in equation 29) whereas the ∇B-drift

obviously appears in a separate term:

{Z̄, H0} = − cb

eB
× (µ̄∇B) +

(B + ∇× mc
e Ūb)Ū

B
= − cb

eB
× (µ̄∇B) + Ūb + Vd (64)

Vd ≡
cmU

eB
∇× Ub (65)

Using

∇× b = −b × (b × (∇× b)) = −b ×
(
(b ·∇)b

)
(66)

which is correct in the order considered here, we obtain the usual expression for vd:

vd = − cb

eB
×

(
mŪ2(b ·∇)b + µ̄∇B

)
(67)

We emphasise that the linearised GKE together with the equation for the gauge func-

tion S1 still contain the physics for all types of linearly describable waves with arbitrary

frequencies. For example, it is shown in reference [3] how to specify the system to Bern-

stein and compressional Alfvén waves. Furthermore, the dielectric tensor derived in the

framework of kinetic wave theory (in slab geometry) is recovered (see [3]). Of course also

fluid equations and consequently MHD theory can be derived by building appropriate

moments of the equations given above [1]. But much more important, it provides a clear

and rigorous way how to extend MHD into a self consistent kinetic MHD model, that can

be used to describe the interaction of MHD modes with kinetic effects.
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Starting point: generalised gyrokinetic Maxwell-Vlasov System 
[Hahm, Brizard, Sugama,...]

Linearise:
are much slower than the gyromotion, it is plausible to separate the gyromotion from the

rest of the particle dynamics. In order to do so, we apply a coordinate transform to this

system of equations:

za = (xa, va∥, µa0, θa) → Za = (Xa, Ua, µa, ξa) (19)

Furthermore we introduce

ϵB =
|ϱ|
LB

with LB ≡ |∇B|
B

as the perturbation expansion parameter, where ϱ is the absolute value of the gyroradius.

The most systematic approach for carrying out this transformation to all orders, would

be the Lie transform technique ([11],[9]). A short introduction to this method is given in

Appendix 8.5. In Appendix 8.6 a different, more physical approach following references

([14]) and ([20]) is summarised.

The resulting Lagrangian is given by:

La = ϵ−1
B

ea

c
A∗

a(Xa, Ua, µa) · Ẋa + ϵB
mac

ea
µaξ̇a − Ha0(Xa, Ua, µa) (20)

with

A∗
a(Xa, Ua, µa) = A0(Xa) + ϵB

mac

ea
Uab(Xa) − ϵ2

B

mac2

e2
a

µaW(Xa), (21)

Ha0(Xa, Ua, µa) =
1

2
maU

2
a + µaB0(Xa) (22)

and

W(Xa) = [∇e1(Xa)] · e2(Xa) +
1

2
b(Xa)b(Xa) · [∇× b(Xa)] (23)

Here b is the unit vector along the magnetic field and e1 and e2 represent two unit vectors

perpendicular to b.

Clearly, all quantities have now to be evaluated at the guiding centre position:

Xa = xa − ϵB
b × va0

Ωa
−O(ϵ2

B); (24)

For simplicity, the higher order coordinate transforms contributions are not given up to

second order, since they are not explicitly needed for the following steps. Here only the

first order terms for X (since it is multiplied with a quantity of order ϵ−1
B ) and the zeroth

order terms for the other coordinates are given:

Ua = va0∥ + O(ϵB); µa = µa0 + O(ϵB); ξa = θa + O(ϵB) (25)
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B = B0(x) + ∆B1(x, t)

A = A0(x) + ∆A1(x, t)

φ = φ0(x) + ∆φ1(x, t)

where ∆ is the ordering parameter for the amplitude ratios of perturbed and unperturbed

quantities.

It is useful to define a new canonical momentum:

pa ≡ mava +
ea

c
(A0 + A1) ≡ mava0 +

ea

c
A0; ⇒ va0 ≡

1

ma
(pa −

ea

c
A0) (30)

To use va0 as a variable of 0-th order has the advantage that only the Hamiltonian contains

perturbed quantities, and not the symplectic part p · q̇. Furthermore E0 = 0 is assumed.

E1 includes not only the fluctuation part but also the O(ϵB) contribution of the E × B-

drifts.

Now the Lagrangian is expanded up to second order:

La = La0 + La1 + La2 (31)

with

La0 =
(
mava0 +

ea

c
A0

)
· ẋ − 1

2
ma|va0|2 ≡ pa · ẋ − Ha0 (32)

La1 = −ea

(
φ1 −

1

c
va0 · A1

)
≡ −eaψa ≡ −Ha1 (33)

La2 = − −e2
a

2mac2
|A1|2 ≡ −Ha2 (34)

3.1.4 Gyrocentre-Transformation

Since the perturbed fields destroy the Lagrangian’s independence of the gyrophase, an-

other coordinate transformation is employed. A detailed mathematical treatment is found

in [9]. Since va0 is chosen according to equation (30), La0 and consequently also the Pois-

son brackets are already in the gyrophase independent form. Only the Hamiltonian part

is perturbed (see equations 32-34). This method is called ’Gyrokinetic Hamilton Formal-

ism’ in contrast to the ’Gyrokinetic Phase Space Lagrange Formalism’, where also the

symplectic part is perturbed.)

Consequently, the generating functions of the transformation are chosen in a way that

leaves the symplectic part undisturbed for all orders, i.e. that this part of the Lagrangian

has to vanish for the higher orders.

Za = (Xa, Ua, µa, ξa) → Z̄a = (X̄a, Ūa, µ̄a, ξ̄a) (35)
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guiding-centre
gyro-centre

we now take into account terms up to second order in ϵ∆.

Equation (53) is expanded in:
[

{Z̄, H̄1(Z̄, t)} · ∂

∂Z̄

]

Fa0(Z̄) +

[
∂

∂t
+ {Z̄, H̄0(Z̄)} · ∂

∂Z̄

]

fa(Z̄, t) = 0 (59)

Leaving out the higher order terms as described above we obtain [1]:

∂f

∂t
+(Ūb+vd) ·∇f − b

m
·∇H0

∂f

∂Ū
=

cb

eB
· (∇F0×H1)−

b

m
· (∇F0

∂H1

∂Ū
−∇H1

∂F0

∂Ū
) (60)

with

{Z̄, H0} = Ūb + vd (61)

It is useful to write this equation also in a different set of coordinates:

Z̄ = (X̄, H0 = E, µ̄, ξ̄) (62)

Using the modified Poisson brackets given in equation (200) one derives:

∂f

∂t
+ (Ūb + vd) ·∇f =

cb

eB
· (∇F0 ×∇H1) +

∂F0

∂E
(Ūb + vd) ·∇H1 (63)

Here a closer look to the different contributions of the drift terms is helpful [19]: the

curvature drift term is contained in B∗ (defined in equation 29) whereas the ∇B-drift

obviously appears in a separate term:

{Z̄, H0} = − cb

eB
× (µ̄∇B) +

(B + ∇× mc
e Ūb)Ū

B
= − cb

eB
× (µ̄∇B) + Ūb + Vd (64)

Vd ≡
cmU

eB
∇× Ub (65)

Using

∇× b = −b × (b × (∇× b)) = −b ×
(
(b ·∇)b

)
(66)

which is correct in the order considered here, we obtain the usual expression for vd:

vd = − cb

eB
×

(
mŪ2(b ·∇)b + µ̄∇B

)
(67)

We emphasise that the linearised GKE together with the equation for the gauge func-

tion S1 still contain the physics for all types of linearly describable waves with arbitrary

frequencies. For example, it is shown in reference [3] how to specify the system to Bern-

stein and compressional Alfvén waves. Furthermore, the dielectric tensor derived in the

framework of kinetic wave theory (in slab geometry) is recovered (see [3]). Of course also

fluid equations and consequently MHD theory can be derived by building appropriate

moments of the equations given above [1]. But much more important, it provides a clear

and rigorous way how to extend MHD into a self consistent kinetic MHD model, that can

be used to describe the interaction of MHD modes with kinetic effects.
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that without loss of generality also Fa is gyrophase independent. As a consequence the

gyrokinetic equation can be written as:
[

∂

∂t
+ {Z̄, H̄a(Z̄, t)} · ∂

∂Z̄

]

Fa(Z̄, t) = 0 (53)

Poisson’s equation is derived as

∆∇2φ1(x, t) = −4π
∑

a

ea

∫
d6Z̄Ja(Z̄)

· δ[X̄ + ϱ̄a0(Z̄) − x] ·
(
Fa(Z̄, t) +∆{Sa1(Z̄, t), Fa(Z̄, t)}

)
(54)

and Ampère’s law as

∆∇2A1(x, t) = −4π

c

(
(j)T (x, t) − j0(x, t)

)
(55)

with

j0(x, t) = − c

4π
∇2A0 (56)

and (j)T as the transversal part of

j(x, t) =
∑

a

ea

∫
d6Z̄Ja(Z̄) · δ[X̄ + ϱ̄a0(Z̄) − x] (57)

·
([

va0(Z̄) −∆ ea

mac
A1(X̄ + ϱ̄a0(Z̄), t)

]
Fa(Z̄t) +∆va0(Z̄){S1(Z̄, t), Fa(Z̄, t)}

)

Again it is straightforward to calculate the total energy of the system and show energy

conservation [5].

3.2 Linearised Equations

Following reference [1], we restrict these fully non linear equations to the linear case by

splitting up the total distribution function into an equilibrium and a perturbed part:

Fa = Fa0 + fa. (58)

Here, we keep terms in ∆ up to first order. For all the physical problems investigated in

this work, background FLR effects are not important. Consequently the small parameter

ϵB is only taken into account in lowest order. But on the other hand physical effects, where

the gyroradius and the perturbed mode size can be comparable are kept. Introducing

ϵ∆ ≡ |kϱ| with k =
∇B1

B1
,
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∂Ū
) (60)

with

{Z̄, H0} = Ūb + vd (61)
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We emphasise that the linearised GKE together with the equation for the gauge func-

tion S1 still contain the physics for all types of linearly describable waves with arbitrary

frequencies. For example, it is shown in reference [3] how to specify the system to Bern-

stein and compressional Alfvén waves. Furthermore, the dielectric tensor derived in the

framework of kinetic wave theory (in slab geometry) is recovered (see [3]). Of course also

fluid equations and consequently MHD theory can be derived by building appropriate

moments of the equations given above [1]. But much more important, it provides a clear

and rigorous way how to extend MHD into a self consistent kinetic MHD model, that can

be used to describe the interaction of MHD modes with kinetic effects.
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mŪ2(b ·∇)b + µ̄∇B

)
(67)

We emphasise that the linearised GKE together with the equation for the gauge func-

tion S1 still contain the physics for all types of linearly describable waves with arbitrary

frequencies. For example, it is shown in reference [3] how to specify the system to Bern-

stein and compressional Alfvén waves. Furthermore, the dielectric tensor derived in the

framework of kinetic wave theory (in slab geometry) is recovered (see [3]). Of course also

fluid equations and consequently MHD theory can be derived by building appropriate

moments of the equations given above [1]. But much more important, it provides a clear

and rigorous way how to extend MHD into a self consistent kinetic MHD model, that can

be used to describe the interaction of MHD modes with kinetic effects.

25

we now take into account terms up to second order in ϵ∆.

Equation (53) is expanded in:
[

{Z̄, H̄1(Z̄, t)} · ∂

∂Z̄

]

Fa0(Z̄) +

[
∂

∂t
+ {Z̄, H̄0(Z̄)} · ∂

∂Z̄

]

fa(Z̄, t) = 0 (59)

Leaving out the higher order terms as described above we obtain [1]:

∂f

∂t
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are much slower than the gyromotion, it is plausible to separate the gyromotion from the

rest of the particle dynamics. In order to do so, we apply a coordinate transform to this

system of equations:

za = (xa, va∥, µa0, θa) → Za = (Xa, Ua, µa, ξa) (19)

Furthermore we introduce

ϵB =
|ϱ|
LB

with LB ≡ |∇B|
B

as the perturbation expansion parameter, where ϱ is the absolute value of the gyroradius.

The most systematic approach for carrying out this transformation to all orders, would

be the Lie transform technique ([11],[9]). A short introduction to this method is given in

Appendix 8.5. In Appendix 8.6 a different, more physical approach following references

([14]) and ([20]) is summarised.

The resulting Lagrangian is given by:

La = ϵ−1
B

ea

c
A∗

a(Xa, Ua, µa) · Ẋa + ϵB
mac

ea
µaξ̇a − Ha0(Xa, Ua, µa) (20)

with

A∗
a(Xa, Ua, µa) = A0(Xa) + ϵB

mac

ea
Uab(Xa) − ϵ2

B

mac2

e2
a

µaW(Xa), (21)

Ha0(Xa, Ua, µa) =
1

2
maU

2
a + µaB0(Xa) (22)

and

W(Xa) = [∇e1(Xa)] · e2(Xa) +
1

2
b(Xa)b(Xa) · [∇× b(Xa)] (23)

Here b is the unit vector along the magnetic field and e1 and e2 represent two unit vectors

perpendicular to b.

Clearly, all quantities have now to be evaluated at the guiding centre position:

Xa = xa − ϵB
b × va0

Ωa
−O(ϵ2

B); (24)

For simplicity, the higher order coordinate transforms contributions are not given up to

second order, since they are not explicitly needed for the following steps. Here only the

first order terms for X (since it is multiplied with a quantity of order ϵ−1
B ) and the zeroth

order terms for the other coordinates are given:

Ua = va0∥ + O(ϵB); µa = µa0 + O(ϵB); ξa = θa + O(ϵB) (25)
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in order to arrive at usual 
expression: 

one has to take into 
account that:

Calculating the Poisson brackets using the following formula ([10])

{
F, G

}
=

e

mc

(
∂F

∂ξ

∂G

∂µ
− ∂G

∂ξ

∂F

∂µ

)

− cb

eB∗
∥

[(
∇F + W

∂F

∂ξ

)
×

(
∇G + W

∂G

∂ξ

)]

+
B∗

mB∗
∥

[(
∇F + W

∂F

∂ξ

)
∂G

∂U
−

(
∇G + W

∂G

∂ξ

)
∂F

∂U

]

shows, that indeed the Poisson brackets are now independent of the gyrophase i.e. the

gyromotion is completely decoupled from the rest of the particle motion:

{
Xa,Xa

}
= ϵB

c

eaB∗
a∥

b × I;
{
Xa, Ua

}
=

B∗
a

maB∗
a∥

; (26)

{
Xa, ξa

}
= ϵB

c

eaB∗
a∥

b ×W;
{
Ua, ξa

}
= −B∗

a · W
maB∗

a∥
; (27)

{
ξa, µa

}
= ϵ−1

B

ea

mac
(28)

where I is unit dyadic and

B∗
a ≡ ∇×A∗

a and B∗
a∥ ≡ B∗

a · b. (29)

It is important to emphasise, that the Lagrangian above still contains the full particle

dynamics up to second order in ϵB, including the gyromotion. But since La does not

contain ξa any more, µa is a constant of motion. Using the variational principle on this

guiding centre Lagrangian would result in the well known drift kinetic equation.

3.1.3 Perturbation of the Lagrangian

In our model we want to keep FLR effects originating from terms ∼ k⊥ϱ. That means that

a particle on its gyro-orbit must be able to feel the variation of the fields due to a certain

mode (that is treated as a perturbation to the equilibrium system). When the system is

perturbed by a small wave field, the guiding centre coordinates derived above are no good

coordinates any longer in the sense that the gyromotion is no longer decoupled. In this

section, we first introduce a new ordering parameter connected with the perturbation and

then switch to gyrocentre coordinates.

Gyrokinetic ordering implies, that fields and potentials can be separated into an equilib-

rium and a perturbation part:

E = E0(x) + ∆E1(x, t)
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frequency ordering:  restrict system to shear Alfvén wave 
frequencies and below by neglecting the fast wave:

3.3 Restriction to Shear Alfvén Physics in Tokamaks

Now the system of equations is restricted to shear Alfvén physics. In an homogenous

plasma the solution of the dispersion relation (derived from the ideal MHD model) with

ω2 = k2
∥v

2
A = k2

∥B
2/µ0mn0 is called shear Alfvén wave. This incompressible wave propa-

gates parallel to the magnetic field. The force balance is given between field line tension

and plasma mass inertia. In terms of energies this translates into an oscillation between

magnetic field energy and kinetic energy of the plasma. There are no perturbations of

density, pressure, parallel magnetic field and perpendicular vector potential. Moreover, it

is decoupled from the other MHD waves, namely the compressional Alfvén wave and the

sound wave, independent of the plasma β = 2µ0P/B2.

For inhomogeneous plasmas this is not true any more. Nevertheless, the decoupling as-

sumption for standard tokamak parameters is justified because the characteristic frequen-

cies of the inhomogeneities (namely the diamagnetic drift frequency ω∗ ∼ 104 and gradient

drift ωd ∼ 105) which are responsible for coupling, are too far apart from ωA = vA/R ∼ 106

to establish effective mode interaction. Furthermore, we are interested in relatively low-β

plasmas (typically a few percent) with moderate aspect ratios (ϵ ≡ a/R ≤ 0.3). Therefore,

the restricition

A1 = A∥b or A⊥ = 0 (68)

is consistent with the definition of the shear Alfvén wave in slab geometry, since it implies

B1∥ ≪ B1⊥ and a small incompressibility. In case of a low β also small pressure pertuba-

tions can be assumed.

For all relevant sets of parameters in fusion research, ωA is small compared to the gyro

frequency, i.e we use equation (42) for S1.

3.3.1 Poisson’s Equation

Then Poisson’s equation becomes:

0 = −4π
∑

a

ea

∫
d6Z̄Ja(Z̄) · δ[X̄ + ϱ̄a0(Z̄) − x] ·

(
Fa(Z̄, t) + ∆

e

B
ψ̃a

∂Fa(Z̄, t)

∂µ

)

0-th order gives: −4π
∑

a eana0(x) = 0. Dropping the indices for ϱa0 and writing the

untruncated Taylor expansion of all functions of the form G(X̄+ϱ̄a0(Z̄)−x) as eϱ·∇G(X̄−
x), we obtain for the first order terms:

na1(x) =
∫

d3v̄e−ϱ·∇f +
∫

d3v̄d3X̄eϱ·∇δ(X̄ − x)

· ea

B

[
(eϱ·∇ − ⟨eϱ·∇⟩)φ(X̄− x) − 1

c
(eϱ·∇ − ⟨eϱ·∇⟩)ŪA∥(X̄ − x)

]∂Fa0(Z̄, t)

∂µ̄
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3.3 Restriction to Shear Alfvén Physics in Tokamaks

Now the system of equations is restricted to shear Alfvén physics. In an homogenous

plasma the solution of the dispersion relation (derived from the ideal MHD model) with

ω2 = k2
∥v

2
A = k2

∥B
2/µ0mn0 is called shear Alfvén wave. This incompressible wave propa-

gates parallel to the magnetic field. The force balance is given between field line tension

and plasma mass inertia. In terms of energies this translates into an oscillation between

magnetic field energy and kinetic energy of the plasma. There are no perturbations of

density, pressure, parallel magnetic field and perpendicular vector potential. Moreover, it

is decoupled from the other MHD waves, namely the compressional Alfvén wave and the

sound wave, independent of the plasma β = 2µ0P/B2.

For inhomogeneous plasmas this is not true any more. Nevertheless, the decoupling as-

sumption for standard tokamak parameters is justified because the characteristic frequen-

cies of the inhomogeneities (namely the diamagnetic drift frequency ω∗ ∼ 104 and gradient

drift ωd ∼ 105) which are responsible for coupling, are too far apart from ωA = vA/R ∼ 106

to establish effective mode interaction. Furthermore, we are interested in relatively low-β

plasmas (typically a few percent) with moderate aspect ratios (ϵ ≡ a/R ≤ 0.3). Therefore,

the restricition

A1 = A∥b or A⊥ = 0 (68)

is consistent with the definition of the shear Alfvén wave in slab geometry, since it implies

B1∥ ≪ B1⊥ and a small incompressibility. In case of a low β also small pressure pertuba-

tions can be assumed.

For all relevant sets of parameters in fusion research, ωA is small compared to the gyro

frequency, i.e we use equation (42) for S1.
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note: if the fast wave physics and hf physics is needed, 
the system of equations has to be solved for the 

perpendicular components of A and a ‘gauge’ function 
S containing the gyro-motion (3 more equations!)

[gyro-gauge theory, H. Qin,1999]



GK equation is written in gyro-centre variables!
back-transform in real space coordinates needed:

now: quasi-neutrality and Ampère’s law have 
to be derived by building moments: 
density, flows, current, pressure,...
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In 0-th order the guiding centre coordinates can be simply replaced by the new gyrocentre

coordinates. For the 1-st and 2-nd order an appropriate choice of the gauge function S1

results in an Hamiltonian that only contains gyrophase averaged expressions. Here just

the final result is given. A short derivation sketching the main steps can be found in

appendix 8.6.

La = ϵ−1
B

ea

c
A∗

a(X̄a, Ūa, µ̄a) · ˙̄Xa + ϵB
mac

ea
µ̄a

˙̄ξa

− H̄a0(X̄a, Ūa, µ̄a) − H̄a1(X̄a, Ūa, µ̄a, t) − H̄a2(X̄a, Ūa, µ̄a, t) (36)

with

H̄a1(X̄a, Ūa, µ̄a, t) = ea⟨ψa(Z̄, t)⟩ξ̄a
(37)

H̄a2(X̄a, Ūa, µ̄a, t) =
e2

a

2mac2
⟨|A1(X̄a + ϵB ϱ̄a, t)|2⟩ξ̄a

−ea

2
⟨{S̃a1(Z̄a, t), ψ̃a(Z̄a, t), }⟩ξ̄a

(38)

⟨...⟩ indicates, that these terms are gyroaveraged. Thus the Hamiltionian is gyrophase

independent. The fields have to be taken on the gyrocentre position:

φ̃1(X̄a + ϵBϱ̄a, t) = φ1(X̄a + ϵBϱ̄a, t) − ⟨φ1(X̄a + ϵBϱ̄a, t)⟩
˜v̄a0 · A1(X̄a + ϵBϱ̄a, t) = v̄a0 · A1(X̄a + ϵBϱ̄a, t) − ⟨v̄a0 · A1(X̄a + ϵBϱ̄a, t)⟩

ψ̃a(Z̄a, t) = eaφ̃1(X̄a + ϵBϱ̄a, t) −
ea

c
˜v̄a0 · A1(X̄a + ϵBϱ̄a, t)

with

X̄a = Xa + ∆{S1(Xa),Xa} + O(∆)2 (39)

ϱ̄a = ϱ̄a0(Z̄a) = b(X̄a) × v̄a0/Ωa(X̄a) (40)

and an equation for the gauge function S1 that contains the gyrophase terms:

ϵ−1
B Ωa

∂S1

∂ξa
+

∂S1

∂t
+

ϵB

(
Ūa

ma
b∗ · ∂S1

∂X̄a
− [

c

eB∗
∥
b× ∂S1

∂X̄a
+

B∗

maB∗
∥

∂S1

∂Ua
] · ∂Ha0

∂X̄a

)

= ψ̃a(Z̄a, t) (41)

3.1.5 Low Frequencies

The usual gyrokinetic ordering assumes low frequency perturbations (compared to the

gyrofrequency): Ω−1
a ∂/∂t ∼ O(ϵB). In zeroth order equation (41) becomes:

Ωa
∂S1

∂ξa
= eaφ̃1(X̄a + ϱa0, t) −

ea

c
˜v̄a0 · A1(X̄a + ϱa0, t), (42)
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B = B0(x) + ∆B1(x, t)

A = A0(x) + ∆A1(x, t)

φ = φ0(x) + ∆φ1(x, t)

where ∆ is the ordering parameter for the amplitude ratios of perturbed and unperturbed

quantities.

It is useful to define a new canonical momentum:

pa ≡ mava +
ea

c
(A0 + A1) ≡ mava0 +

ea

c
A0; ⇒ va0 ≡

1

ma
(pa −

ea

c
A0) (30)

To use va0 as a variable of 0-th order has the advantage that only the Hamiltonian contains

perturbed quantities, and not the symplectic part p · q̇. Furthermore E0 = 0 is assumed.

E1 includes not only the fluctuation part but also the O(ϵB) contribution of the E × B-

drifts.

Now the Lagrangian is expanded up to second order:

La = La0 + La1 + La2 (31)

with

La0 =
(
mava0 +

ea

c
A0

)
· ẋ − 1

2
ma|va0|2 ≡ pa · ẋ − Ha0 (32)

La1 = −ea

(
φ1 −

1

c
va0 · A1

)
≡ −eaψa ≡ −Ha1 (33)

La2 = − −e2
a

2mac2
|A1|2 ≡ −Ha2 (34)

3.1.4 Gyrocentre-Transformation

Since the perturbed fields destroy the Lagrangian’s independence of the gyrophase, an-

other coordinate transformation is employed. A detailed mathematical treatment is found

in [9]. Since va0 is chosen according to equation (30), La0 and consequently also the Pois-

son brackets are already in the gyrophase independent form. Only the Hamiltonian part

is perturbed (see equations 32-34). This method is called ’Gyrokinetic Hamilton Formal-

ism’ in contrast to the ’Gyrokinetic Phase Space Lagrange Formalism’, where also the

symplectic part is perturbed.)

Consequently, the generating functions of the transformation are chosen in a way that

leaves the symplectic part undisturbed for all orders, i.e. that this part of the Lagrangian

has to vanish for the higher orders.

Za = (Xa, Ua, µa, ξa) → Z̄a = (X̄a, Ūa, µ̄a, ξ̄a) (35)
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Kinetic BAEs and GAMs
Ph. Lauber, H.L Berk

1 Equations for LIGKA

In this section the underlying equations of LIGKA are given and based on this system an

analytical derivation of the BAE and GAM dispersion relation is carried out. We start

with the gyrokinetic equation

 f

 t
+ (Ūb+ vd) ·⌃f =

cb

eB
· (⌃F0 ⇤⌃H1) +

 F0

 E
(Ūb+ vd) ·⌃H1 (1)

with

H1 = e(⌅�
Uk⌅
⌥

⌃)

We split o⇤ the adiabatic part by employing the following substitution [1]:

f = h+H1
 F0

 E
� [e

 F0

 E
� c⌃F0

i⌥B
· (b⇤⌃)]J0⌃ (2)

This transforms the gyrokinetic equation (1) into:

 h

 t
+ (Ub+ vd) ·⌃h = [

cb

eB
⇤⌃F0 ·⌃�  F0

 E

 

 t
]J0[⌅� (1� ⌥̂d

⌥
⌃)] (3)

Here ⌥̂d is defined as

⌥̂d =
vd

i
·⌃ (4)

and an exchange of order of the operators (Ub+vd)·⌃ and ea F0/ E�⌃F0/(i⌥B)·(b⇤⌃)

is performed. In this step terms of the order �2 = (a/R0)2 are neglected. Here, a stands

for the small radius and R0 for the big radius of a tokamak.

The QN-equation reads with this substitution [1]:

0 =
⇧

j

ejñj

�0
=

|e|(ñi � ñe)

�0
=

=
⇧

j

ej
�0

⇤ ⌃
J0hjd

3v +
ejn0j

Tj
�0j

⌥
⌅� ⌃ +

�
1 + ⇥jG0(⇧j)

⇥⌥⇥
j

⌥
⌃
�⌅

+
e2ni

�0Ti
(�0 � 1)⌅

Keeping only ion FLR terms and summing over electrons and ions, this becomes:

0 =
Te

|e|ne

⌃
d3v(he � J0hi) + (1 + ⇤)(⌅� ⌃) + ⇤(�0 � 1)

⌥
1� ⌥⇥

i

⌥

�
1 + ⇥

�0G0

�0 � 1

⇥�
⌃(5)

with

⌥⇥ ⌅ [
Tb

ieB
⇤ ⌃n

n
·⌃]; ⌥⇥

e = �⇤⌥⇥
i ; ⇤ =

Te

Ti
; ⇥ ⌅ ⌃T

T
/
⌃n

n
(6)

⇧ ⌅ v2thk
2
⇤

2⇥2
; v2th =

2T

m
; ⇥ =

eB

m
; �0 = e��I0(⇧); G0(⇧) = �⇧+⇧I1(⇧)/I0(⇧) (7)
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split off adiabatic part: (symmetry, numerics)

ω* ω

use Maxwellian distribution function for background 
electrons and ions
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include toroidicity: particle orbits are complicated - use particle 
tracing to calculate kinetic quantities

Note that this equation in the adiabatic limit (he = hi = 0) is degenerated (⌅ = ⇧) to

the lowest order, and exibits the standard polarisation term �0 � 1 ⇤ ⌥2i k
2
⇧.

For the non-adiabatic part of the distribution function h the following ansatz is applied:

h = ĥein⇧�i⌃t

This transforms eqn (3) into:

ĥ = ie
⇤

m

⌅ t

�⌅
dt⇤ei[n(⌥

��⌥)�m(⇥��⇥)�⌃(t��t)]e�im⇥

⌦F0

⌦E
[⌃ � ⌃̂⇥] J0

�

⌅m(r
⇤)� (1� ⌃d(r⇤, ⇥⇤)

⌃
)⇧m(r

⇤)

⇥

(8)

The phase factor

ei[n(⌥
��⌥)�m(⇥��⇥)�⌃(t��t)] (9)

is rewritten using the following definitions [4]:

n(�⇤ � �)�m(⇥⇤ � ⇥) =
⌅ t�

t
dt⇤⇤(n

d�

dt⇤⇤
�m

d⇥

dt⇤⇤
) (10)

⌃D = n(
d�

dt
� q(r0)

d⇥

dt
) (11)

r0 is the orbit averaged radial position of a particle.

⌃0
D =

1

⇤b,t

⌅
dt⌃D; Sm(r

0) = nq(r0)�m (12)

W = W (t) =
⌅ t

0
dt⇤⇤⇥⌃D; W ⇤ = W (t⇤) =

⌅ t�

0
dt⇤⇤⇥⌃D; ⇥⌃D = ⌃D � ⌃0

D (13)

Since the particle motion is periodic -for both trapped and circulating particles - expression

(9) is now expanded in ’bounce’ harmonics :

ei[⌃
0
D(t��t)�W+W �+S0

m(⇥��⇥)+H⇤S0
m⌃t(t��t)�H⇤S0

m⌃t(t��t)�⌃(t��t)] =

e�i[⌃�⌃0
D�H⇤S0

m⌃t](t��t) · ei[S0
m(⇥��⇥)�H⇤S0

m⌃t(t��t)+W ��W ]
⌥ ⌃⇧ �

=�

(14)

� = ei[S
0
m⇥��H⇤S0

m⌃t(t��t0)+W �] · e�i[S0
m⇥�H⇤S0

m⌃t(t�t0)+W ]

=
⇤

k

âkm⇤e
�i[S0

m⇥�H⇤S0
m⌃t t̂+W ]eik⌃b,t(t�t0)eik⌃b,t(t��t) (15)

where

am,k,⇤ =
1

⇤t

⌅ ⌅t/2

�⌅t/2
dt̂⇤ei[S

0
m⇥��(H⇤S0

m+k)⌃t t̂�] (16)

and

aGk,m,⇤ =
1

⇤b,t

⌅ ⌅b,t/2

�⌅b,t/2
dt̂⇤ei[S

0
m⇥��(H⇤S0

m+k)⌃t t̂�+W �]vd(r⇤, ⇥⇤) ·⌅
i⌃

(17)

Note that this equation in the adiabatic limit (he = hi = 0) is degenerated (⌅ = ⇧) to
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Here, H is the Heaviside step function, so that H vanishes for trapped particles and equals

unity for circulating particles. ⇧ equals 1 for co-passing and �1 for counter-apassing

particles.

The non-adiabatic density response for circluatling particles of the species a can be written

as:
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Here,
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For obtaining the dispersion relation and for constructing the weak form, one has to inte-

grate over the whole plasma volume. This operation requires a trivial toroidal integration,

a radial integration (which is carried out numerically by introducing a finite element for-

mulation) and a poloidal angle intergration that is carried out analytically, leading to the

following expression for the non-adiabatic density response:
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integrate over time, expand in ‘bounce/transit’ 
harmonics and change to (E,Λ) phase space 

coordinates:
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Here, t̂ = t − t0, t̂′ = t′ − t0; note that dt′ = dt̂′.
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H represents the Heavy-side function and indicates that HσS0
mωtt̂′ is 0 for trapped par-

ticles and σS0
mωtt̂′ for circulating particles. With the expansion above, the perturbed

distribution function h becomes :
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In the zero orbit width approximation the integration over t′ can be performed and one

yields :

h = −ea

∑

m

∑

k

∂F0
∂E (ω − ω̂∗)e−imθJ0

(ω − ω0
D − HσS0

mωt − kωb,t)︸ ︷︷ ︸
=Rm,k

[

akmφm(r) − (akm − aG
kmω̄d(r)

ω
)ψm(r)

]

(103)

Here it is assumed that the perturbation vanishes at t′ → −∞.

Here the term responsible for Landau damping shows up for the first time: the denomi-

nator ω−ω0
D −HσS0

mωt−kωb,t can become very small (for complex ω) or even zero (for a

pure real ω). In that case the particle is resonant with the wave and an energy exchange

is possible.

For trapped particles with wide orbits, of course, approximation (103) is not sufficient.

Thus the trapped particle case is treated separately (see below).

Nevertheless the formal integration over the velocity space can be carried out for all par-

ticles together. Using the following relations and definitions (similar to section 4.3) we

change again to the(E,Λ) coordinate system:
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When combining these two results, adding the adiabtic part and the polarisation term

and summing over electrons and ions the QN eqn with sidebands can be written as
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Here, H is the Heaviside step function, so that H vanishes for trapped particles and equals

unity for circulating particles. ⇧ equals 1 for co-passing and �1 for counter-apassing

particles.
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For obtaining the dispersion relation and for constructing the weak form, one has to inte-

grate over the whole plasma volume. This operation requires a trivial toroidal integration,

a radial integration (which is carried out numerically by introducing a finite element for-

mulation) and a poloidal angle intergration that is carried out analytically, leading to the

following expression for the non-adiabatic density response:
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Here, b(r, ⇥) vanishes since J� = 1 + � cos(⇥) and therefore
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The gyrokinetic moment equation (or parallel current equation) completes the system:
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where the adiabatic split o⇥ tranforms the right hand side to
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we had:

write down equations for one toroidal harmonic and 
three poloidal harmonics; integrate over velocity space;
circulating particles only, v=vparallel, Maxwellian F0:

contains electrostatic 
waves(sound, drift): 
symmetric in Φ and ψ

off-diagonal elements (sidebands)

polarisation terms
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When combining these two results, adding the adiabtic part and the polarisation term

and summing over electrons and ions the QN eqn with sidebands can be written as
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The velocity phase space integralsin the GKM equation (23) are carried out similarly.

The final result is:
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with

Hm(xm) = H̃m(xm,i) + ⇤H̃m(xm,e)

where the columns of the matrix in line (35) refer to m0 � 1,m0,m0 + 1 and the rows to

p0 � 1, p0, p0 + 1 for a certain mode with mode number m0. Similarly, the summations in

the GKM equation can be carried out:
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1.3 Velocity phase space integration

The velocity phase space integration can be performed in �, Y or v⌥, v⌃ coordinates.

Whereas in LIGKA the constants of motion are retained as variables, for analytical pur-

poses it is easier to continue with v⌥, v⌃. However, one can easily prove that
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lead to the same result.

Assuming a Maxwellian F0 with ⌦F0/⌦E = �F0/T and using

� ⇧

0

dt e�t2

x2
m � t2

=
�
⇤
⇤Z(xm)

2xm
;

� ⇧

0

dt t2 e�t2

x2
m � t2

=
�
⇤
⇤

2
(xm + x2

mZ(xm))

where

xm =
⌥

|k⌥,m|vth
; t =

v⌥
vth

; vth =

⌦
2T

m

one derives for the ’symmetric’ part of the non-adiabatic perturbed density response (eqn
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1.2 Analytical recovery of compressible MHD features

For obtaining the dispersion relations in the low (� < �ti,�bi) and intermediate (�ti,�bi <

� < �te,�be frequency regime, the coupling of the pure Alfén wave, the sound wave and

the drift waves has to be kept. In the system of our equations this coupling is due to the

FLR terms and, more importantly for low frequencies, due to the drifts. Specifically, it will

turn out that the geodesic curvature component of vdr ⇧ sin(⇤) is crucial for recovering

the BAE or GAM dispersion relations. This implies that the poloidal sidebands of the

density and the pressure perturbations have to be retained. Acting on the perturbed

potentials ⌥(r, ⇤, , t) = ⌥m(r)e�i⌃t�im⇥+in⌥ the drift operator can be rewritten in a more

convenient form (for numerical evaluation via a drift-kinetic code like HAGIS [?]):
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In the following orbit and flux surface averages are needed. Applying these operations

cancel the last terms of eqn (29) to lowest order in ⇥: since in the following we will

simplify the system of equations by applying the fast circulating particle approximation

�tt̂ ⌃ ⇤and �t ⌃ |v⇤|/qR0, it is obvious that this term vanishes due to (b ·⌦⇤) ⌃ 1/qR0 .

(Note that �t is independent from ⇥ to first order for � = 0.)
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Here, �prec = ⌥n( ̇� q⇤̇)� is the precessional drift frequency.

After carrying out the angle integration, the following definition will be useful:
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With these simplifications the propagator coe⇧cients ak,m,⌅, aGk,m,⌅,Kk,m,p,⌅ andKG
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can be reduced to:
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An additional drift associated with this time variation can be found in the litterature

• vP = m
e b(0) ⇤

dvg

dt , the polarization drift

but it is only second order in �� with our conventions.
It follows from the described drifts that the particle trajectories deviate from the field

lines, which we represented in Fig. 2.2.

Hamiltonian description of particle motion

Even if the direct expansion of the charged particle motion mentioned in the previous section
may lead to a good physical understanding of its main dynamics, it rapidly becomes a
hazardous work, when one wants to change the coordinate system, the geometry, add a
perturbation or simply find higher order expressions.

For this reason, the developments to come will rather make use of the equivalent hamilto-
nian description of particle motion, which is particularly practical to unveil motion invariants
or check the validity of their conservation, for example the energy conservation. The notions
of Hamiltonian mechanics used in this thesis are summarized in Appendix A, and expressed
using the conventions of Ref. [10], where a Lagrangian is mathematically a di⇥erential 1-form.

The motion of a charged particle immersed in a magnetic field, B = ⌥⇤A and an electric
field E = �⌥⇥ � ⇧tA in the six dimensional space-velocity phase space, is a Hamiltonian
system, which can be expressed in the coordinate system (x,p) = (x, mv + eA), with

the Lagrangian �̂(x,p, t) = p · dx� Ĥdt, (2.17)

the Hamiltonian Ĥ(x,p, t) =
|p� eA|2

2m
+ e⇥. (2.18)

A Hamiltonian system described by the Lagrangian �(Z, t) = �(Z, t) · dZ � H(Z, t)dt
with Z = (Za)a=1...6 ⇧ R6 a phase-space coordinate system, verifies Hamilton’s equations:

dZa

dt
= [Za, H] + [Za, Zb]

⇧�b

⇧t
(2.19)

where [, ] are called the Poisson Brackets.
The Poisson Brackets correspond to a bilinear antisymmetric function depending of the

Lagrangian components �(Z, t). They are correctly definined in Appendix A. Nethertheless,
only two simple situations will be tackled in the thesis:

• When the values of the Poisson Brackets are known in a given coordinate system Z ⇧ R,
then for any function f(Z, t) and g(Z, t)

[f, g] =
⇧f

⇧Za
[Za, Zb]

⇧g

⇧Zb
. (2.20)

• When the coordinate system is canonical, that is, when the Lagrangian is of the form
�(Z, t) = Z1dZ4 + Z2dZ5 + Z3dZ6 �H(Z, t)dt, the expression of the Poisson Bracket
is

[, ] = ⇧X ⇧P � ⇧P⇧X (2.21)

where X = (Z1, Z2, Z3), and P gathers the so-called momenta, P = (Z4, Z5, Z6).
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Hamiltonian description:

Hamilton’s equation of motion:

2.1. MAGNETIC CONFIGURATION AND PARTICLE TRAJECTORIES

The Lagrangrian describing the charged particle motion 2.17 is obviously expressed in canon-
ical coordinates. Thus, Hamilton’s equations 2.19 are easily computed,

dx
dt

= �pĤ = p/m (2.22)

dp
dt

= ��xĤ = e(E + v ⇤B) + e
dA
dt

(2.23)

which shows that the Hamilton’s equations are nothing but the usual Lorentz force balance.
Nevertheless, we now have a powerful formalism to make coordinate transformations.

⌅ Coordinate transformation in Hamiltonian systems & Application to the guiding-center
transformation ⌅
Hamilton’s principle (see Appendix A) implies that the physics is conserved in a coordinate
transformation, Z⇧ Z⇤, if there exists a total derivative dS [11],

�⇤(Z⇤, t) = �(Z, t) + dS (2.24)

Littlejohn [12] made use of this principle to derive the equations of motion for the guiding
center in an equilibrium field B(0). Starting from the Lagrangian �̂ of Eq. 2.17 and after
successive modifications of the form 2.24, he found to the first order in ⇤⇥ the guiding-center
relevant Lagrangian in the form

(x,p) ⇧ (X, µ, v⌅, �) (2.25)

�̂ ⇧ �gc = A⇥
(0) · dX + µd� �Hgcdt
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⌅ + µB(0)(X) + e⌅(0)(X), (2.26)
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�
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⇥
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(2.27)

where the (⇥) used by this author may be understood as a first order correction to the tra-
ditional fields: A⇥

(0) = A(0) + (mv⌅/e)b(0), B⇥
(0) = ⌃⇤A⇥

(0), B⇥
(0)⌅ = b(0) · B⇥

(0).

As required, this formulation leads to the same dynamics as the one described in the
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2.1. MAGNETIC CONFIGURATION AND PARTICLE TRAJECTORIES
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which shows that the Hamilton’s equations are nothing but the usual Lorentz force balance.
Nevertheless, we now have a powerful formalism to make coordinate transformations.
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�⇤(Z⇤, t) = �(Z, t) + dS (2.24)
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Hamiltonian description: action angles

due to guiding centre transformation, canonicity of coordinates 
(X,E ,μ,γ) is lost
it is possible to find action angles, i.e. canonical variables for 
periodic systems:

CHAPTER 2. FUNDAMENTALS

Action-angle variables

In the previous section, we explained that a Hamiltonian description of particle motion could
be powerful, and lead to simple insightful motion equations when expressed in canonical
variables. However, when going from the particle variables (x,p) to the guiding-center
variables (X, µ,E, ⇥), canonicity is lost. Fortunately, in the tokamak geometry, it is possible
to display a canonical system of variables which is consistent with the decoupling
of the gyromotion and guiding-center motion. Moreover, if follows from the tokamak
periodicity in ⌅ and ⌥ that the particle motion is quasiperiodic at equilibrium, and the chosen
system of coordinates can be taken to be a system of action-angle variables (�,J). Action-
angle variables are a particular type of canonical variables appropriate for periodic systems
where the “spatial” variables are angles and the momenta (or actions) are motion invariants,
that is,

J̇ = �
↵H(0)

↵�
= 0, �̇ =

↵H(0)

↵J
= �(0)(J) (2.29)

Hence, this description does not only provide canonicity but also physical motion invariants,
to which µ belongs. Moreover, the characteristic eigenfrequencies of the periodic particle
motion can be directly derived, and the question of the time decoupling of the di⌅erent
periodic motion directly assessed. In particular, for the understanding of the resonances
between waves and energetic particles, it is necessary to know these eigenfrequencies.

A derivation of the set of action-angle variables used in this thesis is provided in Ap-
pendix B.1, which closely follows Refs. [13, 14, 15]. The motion is found to be divided into
three angular periodic motions

� = (�1, �2, �3) = � t = �0 + �
⌥ �

0

d⌅

⌅̇
(2.30)

(where �0 stands for the initial phase-space position) with invariant eigenfrequencies
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⇥

+ ⇤passing q(⇥̄)⇤b

(2.31)

where the first angular motion is found to be related to the gyromotion ⇥, the second to
the poloidal motion described by ⌅ also called the bounce motion, and the third, called
precessional drift, to the particle drift in the toroidal direction. The three angular motions
can be clearly identified in the 3-D picture of Fig. 2.2. The bounce integral (⇤b/2⌃)

⇧
(d⌅/⌅̇)...,

present in the eigenfrequencies expression, allows to remove the fields ⌅-dependence. For
passing particles,

⇧
=

⇧ 2⇥
0 , whereas for trapped particles oscillating between the ⌅-angles

[�⌅0, ⌅0],
⇧

= (1/2)
⌃ ��0

��0
(the full closed banana) ⌅
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��0
.

The corresponding invariant momenta are
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(2.32)
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motion is separated into 3 periodic motions:

gyromotion

poloidal bounce frequency

toroidal precession frequency



B.2. EXPRESSIONS OF THE EQUILIBRIUM CHARACTERISTIC FREQUENCIES
FOR SOME WELL DEFINED GEOMETRIES

⌅ Approximate calculation of the bounce and drift motion ⌅
Let us be a little bit more explicit on the bounce and drift motion involved, using our
knowledge of the equilibrium particles drifts 1. We know from subsection 2.1.2 that the
motion of a charged particle in the tokamak geometry can be divided into a parallel and
lower order drift motion v = v⇤b + vg, such that

�̇ = vg ·⌃� (B.17)
⇤̇ = v⇤b ·⌃⇤ + vg ·⌃⇤ (B.18)
⌃̇ = v⇤qb ·⌃⇤ + vg ·⌃⌃ (B.19)

At the lower order, ⇤̇ is dominated by the parallel velocity and the bounce frequency can be
rewritten

⇥�1
2 =

⇧
d⇤

2⇧

1
b ·⌃⇤ v⇤

. (B.20)

The drift motion remains relevant in the drift frequency. Indeed, noticing

⌃̇� q(�̄)⇤̇ =
v⇤

B(0)
(q(�)� q(�̄))B(0) ·⌃⇤ + vg ·⌃(⌃� q(�̄)⇤)

⇧ q⇥��⇤̇ + vg ·⌃(⌃� q(�̄)⇤)

it comes

⇥3 = ⇥b

⇧
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2⇧

1
⇤̇
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⇧
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�q⇥�̇⇤ + vg ·⌃(⌃� q(�̄)⇤)

⇥
+ q(�̄)⇥b

⇧
d⇤

2⇧
(B.21)

where the last term in Eq. B.21 cancels for trapped particles in the small radial drift approxi-
mation, such that the particle drift is the main contribution in ⇥3. In this study, the particle
radial drift has been neglected and the last term of Eq. B.21 was consequenlty rewritten
q(�̄)⇥b�passing in Eq. 2.33.

B.2 Expressions of the equilibrium characteristic frequencies for
some well defined geometries

Circular geometry

We now derive the expression of the normalized bounce and drift frequencies, such that

⇥2 = ⇥b = ± 1
qR0

⌥
2E

m
⇥̄b, ⇥3 = ⇥d + �passingq(r)⇥b =

q(r)
r

E

eB0R0
⇥̄d + �passingq(r)⇥b

(B.22)

in a simple circular equilibrium, without Grad-Shafranov shift and in the large aspect ratio.
In such a geometry, b ·⌃⇤ ⇧ 1/qR. It directly comes

⇥̄b =

⇤⇧
d⇤

2⇧

1⌃
1� ⌅(1 + ⇥ cos ⇤)

⌅�1

(B.23)

1Note that these drift should normally be accessed directly from the action-angle formulation, but that
such a formulation of the drifts is much less tractable.
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The drift motion remains relevant in the drift frequency. Indeed, noticing
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where the last term in Eq. B.21 cancels for trapped particles in the small radial drift approxi-
mation, such that the particle drift is the main contribution in ⇥3. In this study, the particle
radial drift has been neglected and the last term of Eq. B.21 was consequenlty rewritten
q(�̄)⇥b�passing in Eq. 2.33.

B.2 Expressions of the equilibrium characteristic frequencies for
some well defined geometries

Circular geometry

We now derive the expression of the normalized bounce and drift frequencies, such that

⇥2 = ⇥b = ± 1
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in a simple circular equilibrium, without Grad-Shafranov shift and in the large aspect ratio.
In such a geometry, b ·⌃⇤ ⇧ 1/qR. It directly comes
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(B.23)

1Note that these drift should normally be accessed directly from the action-angle formulation, but that
such a formulation of the drifts is much less tractable.
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in a simple circular equilibrium, without Grad-Shafranov shift and in the large aspect ratio.
In such a geometry, b ·⌃⇤ ⇧ 1/qR. It directly comes
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1Note that these drift should normally be accessed directly from the action-angle formulation, but that
such a formulation of the drifts is much less tractable.
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in a simple circular equilibrium, without Grad-Shafranov shift and in the large aspect ratio.
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1Note that these drift should normally be accessed directly from the action-angle formulation, but that
such a formulation of the drifts is much less tractable.
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explicit motion of particles

APPENDIX B. CHARGED PARTICLE MOTION

with ⌃ = µB0/E, ⇤ = r/R0. Using ⇧2 = 2⇤⌃/[1� (1�⇤)⌃], and keeping only first order e⇥ects
in ⇤, it follows
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where we recall that by convention, we take for passing particles (⇧ < 1),
�

=
� 2⌅
0 , and for

trapped particles (⇧ > 1),
�

=
� ⇥0

�⇥0
.

Using the change of variable sinu = ⇧ sin(⌅/2) for the trapped particles ⌅ ⇥ [�⌅0, ⌅0], the
normalized bounce frequency is given explicitely by the formulas
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where K(⇧) is the firs elliptic integral of the first kind, K(⇧) =
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where E is the elliptic integral of the second kind, E =
� ⌅/2
0

⇤
1 + ⇧2cos⌅ d⌅.

Circular geometry with shift

For the analysis performed in the thesis, we made use of slightly more general expressions
of the bounce and drift frequencies, which we found in Ref. [16] and include the existence of
a Grad-Shafranov shift, characterized by � = �q2R0�r⇥.
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 with

 with

leads to elliptic integrals for bounce/passing and precessional 
particle motion [circular, large aspect ratio: Coppi, Rewoldt, 1980]

 with

lowest order:
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with P̂ and n̂ are the normalised pressure resp. density. To compare with the equation for

shear Alfvén modes derived from the standard MHD model, one identifies ∇P
iωB (b ×∇)ψ

with the perturbed pressure and uses the vector identity (66). Then one obtains for the

pressure term (4-th addend):

µ0∇P1 ·∇× B

B2

From the ideal MHD side, line (85) can be derived using ∇j1 = 0, the linearised force

balance and ideal Ohm’s law [1]. Therefore all ideal MHD results can be recovered from

the GKM equation.

4.3 α-Particles

Due to their high energies compared to the background, fusion born α-particles are not

Maxwellian. Instead, one usually chooses the following distribution function:

F0 = CψF0ψ · CE

E3/2 + E3/2
c

Erfc[
E − E0

∆E
] (86)

This expression is called ’slowing-down’ (see figure 8), because it describes the drag of

the background electrons and ions on the fusion born α’s, derived from the Fokker-Planck

equation under the assumptions that D and T have the same energy Ti and the energy

spectrum is approximately Gaussian [39].

For F0ψ one often uses 1/(exp[(ψ − ψ0)/∆ψ]+1) or also (1−s2)3 with s ∝
√

ψ. Parameters

that are likely to fit the ITER experiment [40] are:

∆E = 335.2keV, E0 = 3520keV, Ec = 329.6keV, ψ0 = 0.2, ∆ψ = 1/14

Since this distribution is given in terms of E, a coordinate change from U, µ to E,Λ is

advantageous:
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∆E = 335.2keV, E0 = 3520keV, Ec = 329.6keV, ψ0 = 0.2, ∆ψ = 1/14

Since this distribution is given in terms of E, a coordinate change from U, µ to E,Λ is

advantageous:
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− ω2

ω2
A0

∇⊥
n̂B2

0

B2
∇⊥ψ + ∇(∇∥ψ) × b ·∇(

∇×B0

B
) + (B ·∇)

(∇×∇×∇∥ψ) · B
B2
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+ µ0P0
b

B
×
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(b ·∇)b +

∇B

B

]
·∇

[
∇P̂

B
(b ×∇)ψ

]

= 0 (85)

with P̂ and n̂ are the normalised pressure resp. density. To compare with the equation for
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iωB (b ×∇)ψ
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µ0∇P1 ·∇× B

B2
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with P1=

reduced MHD expression!

and an exchange of order of the operators (Ub + vd) ·∇ and ea∂F0/∂E − c/(iωB)∇F0 ·
(b×∇) is performed. In this step terms of the order ϵ2 = (a/R0)2 are neglected. Here, a

stands for the small radius and R0 for the big radius of a tokamak.

Now the integrals over the velocity space are written more explicitly:
∫

J0fd3v =
∫

J0h
3v +

∫
J0[(eJ0φ − J0U

(∇ψ)∥
iω

)
∂F0

∂E
− e

∂F0

∂E
+

c∇F0

iωB
· (b×∇)]J0ψ

=
∫

J0h
3v +

∫ [
eJ2

0

∂F0

∂E
φ − eJ2

0

∂F0

∂E
ψ − eJ2

0

∂F0

∂E
U

(∇ψ)∥
iω

− J2
0

cb ×∇F0

iωB
·∇ψ

]
d3v

If F0 is Maxwellian then we can continue to integrate analytically and derive for the

QN-equation [1]:

∑

j

e

[ ∫
J0hd3v +

en0

T
e−χI0(χ)

[
ψ − φ −

(
1 + ηG0(χ)

)ω∗

ω
ψ

]]

= 0 (77)

with

ω∗ ≡ [
cTb

ieB
× ∇n

n
·∇]; η ≡ ∇T

T
/
∇n

n
(78)

χ ≡ v2
thk

2
⊥

2Ω2
; G0(χ) = −χ + χI1(χ)/I0(χ) (79)

In contrast to the original derivation by Qin, here the FLR terms in the GKM integrals

are kept for consistency. This term can be rewritten as:
∫

e
vd

ω
·∇J0fd3v =

∫
e
vd

ω
·∇J0hd3v (80)

+
∫

e
vd

ω
·∇J0

{

e
∂F0

∂E
J0(φ − ψ) + [c

∇F0

iωB
· (b×∇) − eU

∂F0

∂E
∇]J0ψ

}

Using

vd = − b

eB
× [mU2(b ·∇)b + µ∇B],

the first term in the curly brackets becomes:
{

[
b

ωB
× (b ·∇)b] ·∇

∫
mU2J2

0

∂F0

∂E
d3v + [

b

ωB
×∇B] ·∇

∫
µJ2

0

∂F0

∂E
d3v

}

e(φ − ψ)

Assuming a Maxwellian F0 results in:

b

ωB
×

[
(b ·∇)b + (1 + G0)

∇B

B

]
·∇en0e

−χI0(χ)(ψ − φ)

Here, (b×∇B) ·∇(1/B) = (b×∇B) · (−∇B/B2) = 0 is used. The second term in curly

brackets of equation (80) is treated similarly to become:

−[
b

ωB
× (b ·∇)b] ·∇

{ c

iωB

∫
mU2J2

0∇F0d
3v · (b×∇) − e

∫
mU3J2

0

∂F0

∂E
d3v

}
ψ

−[
b

ωB
×∇B] ·∇

{ c

iωB

∫
µJ2

0∇F0d
3v · (b×∇) − e

∫
µUJ2

0

∂F0

∂E
d3v

}
ψ
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QN: 

GKM:
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Integration of  cross section diverges for small scattering 
angles: Coulomb potential has long interaction range!

physical argument: cut off integration at Debye length since 
outside the Debye sphere the ES potential is shielded (or 

integrate Debye-Hückel potential)
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minimal scattering angle for Debye length and ratio of small  to large 
angle scattering are:

ln Λ≈18

Coulomb collisions:
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momentum exchange:   
calculate dynamical friction coefficients
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perpendicular contribution vanishes due to cos θ dependence

θ: angle out of plane
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so far: background particles had one, fixed velocity
now: include Maxwellian backgroundv2
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energy relaxation for arbitrary species 


