Fast Particles in Fusion Plasmas and present-day experiments

Advanced Plasma Physics Courses, IPP
Garching, 2020
Philipp Lauber and Axel Könies

- sources and creation of a super-thermal particle population -particle motion in 2D and 3D systems, effect of static perturbations
- linear physics of resonant phenomena:
I. Experimental evidence

2. Alfvén waves, models, resonant excitation, codes
3. Energetic particle modes
4. $\mathrm{n}=\mathrm{I}$ modes
-non-linear phenomena and EP transport
I.perturbative regime
2.adiabatic regime
3.non-adiabatic regime

some references

plasma text books and lectures:Wesson, Stroth, Zohm, Guenter,...
R.Fitzpatrick: http://farside.ph.utexas.edu/teaching/plasma/Plasmahtml/ other courses: J.VanDam (IFS): http://home.physics.ucla.edu/calendar/ conferences/cmpd/talks/vandam.pdf
experimental overview:
http://www.physics.uci.edu/~wwheidbr/papers/Basic.pdf
theoretical overviews:

- Chen \& Zonca: Physics of Alfvén waves and energetic particles in burning plasmas, RMP 2016
- Breizman \& Sharapov:'Major Minority’ , PPCF 201I
- Ph. Lauber: Phys Rep, 2013
- Y.Todo, [2020]
these slides can be found @ http://www2.ipp.mpg.de/~pwl/
if ignition condition is fulfilled: thermonuclear self-heating
for the first time expected to happen in ITER
thermal background: $\quad 15 \mathrm{keV}$
energetic alpha particles: 3.5 MeV
alpha particles transfer their energy via
Coulomb collisions to the plasma background and thus keep it at the required temperature
cross section for Coulomb collisions depends strongly on energy: $\sigma \sim I / W_{\text {kin }^{2}}$

typical properties of energetic particles (EPs)

- in addition to thermal , i.e. Maxwellian background in a fusion relevant plasma there are highly energetic particles with:
- high temperature: $\mathrm{T}_{\mathrm{EP}} \gg \mathrm{Ti}, \mathrm{Te}$
- small density: $n_{E P} \ll$ ne,in
- pressure $\sim(n T)_{\text {EP }} \sim(n T)_{\text {back }}$
- can be non-Maxwellian: slowing down distribution
- or anisotropic in parallel velocity (NB) or pitch angle (ICRH)
- energetic fusion α profile is peaked in the plasma centre

birth, life and death of alpha particles

- produced with rate $\partial \mathrm{N} / \partial \mathrm{t}=\mathrm{n}_{\mathrm{D}} \mathrm{n}_{\mathrm{T}}$ $<\sigma v>$ at peaked at energy=3.5MeV - particles slow down via Coulomb collisions - smooth distribution in time T_{s} (slowing down time)
- after some longer time T_{M} the particles thermalise against electrons and ions to become Maxwellian at $T_{\alpha}=T_{D, T}$
- confinement time for α 's: T_{α};

birth velocity
- in steady state, there are two α populations: slowing down α 's and thermal α-ash
- $\mathrm{T}_{\alpha} \sim 10 \mathrm{~T}_{\mathrm{M}} \sim 1000 \mathrm{~T}_{\mathrm{s} ;} ; ~ \alpha$'s have time to thermalise: He-ash problem

Assume that we have a constant heating input or fusion power - how does the distribution function of the energetic ions looks like after 'sufficient' long time? What determines this time(s) T_{s} ?

Coulomb collisions:

Rutherford: differential cross section for Coulomb collision:

$$
\mathrm{d} \sigma(u, \chi)=\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{1}{2 \mu_{r} u^{2} \sin ^{2} \frac{\chi}{2}}\right)^{2} \mathrm{~d} \Omega=\mathrm{dN} / \mathrm{n}
$$

$$
\mathrm{d} \Omega=2 \pi \sin \chi \mathrm{~d} \chi
$$

calculate dynamical friction coefficients

momentum exchange: $\left\langle\frac{\partial \mathbf{u}}{\partial t}\right\rangle_{\Omega}$
rate of change in energy: $\quad \delta E_{1}=\frac{m_{1}}{2}\left(v_{1}^{2}-v_{1}^{\prime 2}\right)$
if background particles have Maxwellian temperature distribution:

$$
\begin{gathered}
\left\langle\frac{\partial \mathbf{p}_{1}}{\partial t}\right\rangle=\int \mathrm{d}^{3} v_{2} f\left(\mathbf{v}_{2}\right)\left\langle\frac{\partial \mathbf{p}_{1}}{\partial t}\right\rangle_{\Omega} \\
\int \mathrm{d}^{3} v_{2} \frac{\mathbf{u}}{u^{3}} f\left(\mathbf{v}_{2}\right)=-\int \mathrm{d}^{3} v_{2} f\left(\mathbf{v}_{2}\right) \nabla_{v_{1}} \frac{1}{u}=-\nabla_{v_{1}} h\left(\mathbf{v}_{1}\right) . \\
h\left(\mathbf{v}_{1}\right)=\int \mathrm{d}^{3} v_{2} f\left(\mathbf{v}_{2}\right) \frac{1}{u} \cdot g\left(\mathbf{v}_{1}\right)=\frac{1}{2} \int \mathrm{~d}^{3} v_{2} f\left(\mathbf{v}_{2}\right) u \\
\text { are called Rosenbluth potentials }
\end{gathered}
$$

energy relaxation for arbitrary species:
$\left\langle\frac{\partial E_{1}}{\partial t}\right\rangle=-\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{4 \pi \ln \Lambda_{2} n_{2}}{m_{2} v_{1}}\left\{\operatorname{erf}\left(\beta_{2} v_{1}\right)-\left(1+\frac{m_{2}}{m_{1}}\right) \frac{2 \beta_{2} v_{1}}{\sqrt{\pi}} e^{-\beta_{2}^{2} v_{1}^{2}}\right\}$
Advanced Courses EP, $2020 \quad \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{~d} \xi e^{-\xi^{2}} \beta=\sqrt{\frac{m}{2 T}} 1 / \mathrm{vth}$

collisions of fast ions with electrons, slow ions

$$
V_{e, t h}>v_{i, i n j}>V_{i, t h}
$$

$$
\left\langle\frac{\partial E_{1}}{\partial t}\right\rangle \approx\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2} 4 \pi Z_{i}^{2}\left\{\frac{2 \beta_{e} \ln \Lambda_{e} n_{e}}{\sqrt{\pi} m_{e}}\left(-\frac{2}{3} \beta_{e}^{2} v_{1}^{2}+\frac{m_{e}}{m_{i}}\right)-\frac{Z_{i}^{2} \ln \Lambda_{i} n_{i}}{m_{i} v_{1}}\right\} \quad \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{~d} \xi e^{-\xi^{2}}
$$

energy of beam ions[keV]
$E_{e q}=\left\{\frac{9 \pi Z_{i}^{4} m_{i}}{16 m_{e}}\left(\frac{n_{i}}{n_{e}} \frac{\ln \Lambda_{i}}{\ln \Lambda_{e}}\right)^{2}\right\}^{1 / 3} T_{e} \approx 15 T_{e}$.

$$
\begin{aligned}
& \beta_{2} v_{1}>2 \Rightarrow\left\{\begin{array}{c}
h\left(v_{1}\right) \approx n_{2} / v_{1} \\
\nabla_{v_{1}} h\left(v_{1}\right) \approx-n_{2} / v_{1}^{2} \frac{\mathbf{v}_{1}}{v_{1}},
\end{array}\right. \\
& \beta_{2} v_{1}<0.3 \Rightarrow\left\{\begin{array}{c}
h\left(v_{1}\right) \approx \frac{2}{\sqrt{\pi}} \beta_{2} n_{2} \\
\nabla_{v_{1}} h\left(v_{1}\right) \approx-\frac{4}{3 \sqrt{\pi}} \beta_{2}^{3} n_{2} v_{1} \frac{\mathbf{v}_{1}}{v_{1}} .
\end{array}\right.
\end{aligned}
$$

depending on the temperature ratio between injected ions and background ions (fig: 2 keV), either the background ions or the background electrons are heated predominantly

Slowing down times and free mean path

energy relaxation time between ions and electrons assume also distribution for species $\mathrm{I} \rightarrow \quad \tau_{\mathrm{e}}=\frac{12 \pi^{3 / 2}}{\sqrt{2}} \frac{\varepsilon_{0}^{2} m_{\mathrm{e}}^{1 / 2} \mathcal{L}_{\mathrm{e}}^{3 /}}{n_{\mathrm{i}} \dot{Z}^{2} e^{4} \ln \Lambda}$.

$$
\begin{array}{ll}
\text { ions }(Z=1) & \tau_{\mathrm{i}} \simeq \frac{1}{1.1}\left(\frac{2 m_{\mathrm{i}}}{m_{\mathrm{e}}}\right)^{1 / 2} \tau_{\mathrm{e}} \\
\text { protons } & \tau_{\mathrm{p}} \simeq 55 \tau_{\mathrm{e}} \\
\text { deuterons } & \tau_{\mathrm{d}} \simeq 78 \tau_{\mathrm{e}} \\
\text { tritons } & \tau_{\mathrm{t}} \simeq 95 \tau_{\mathrm{e}}
\end{array} \quad[\mathrm{WeSSOD}]
$$

slowing down time >> Alfvén/sound wave timés
for many problems, an 'equilibrium collisionless' EP distribution function can be assumed

Typical distribution functions: NBI at AUG

NUBEAM: Fokker Planck model for slowing down, pitch angle scattering, and energy diffusion
can now also be calculated in real time! [RABBIT]
α-particles at ITER: isotropic in pitch angle

in addition: lon cyclotron resonance heating

outline

- sources and creation of a super-thermal particle population -particle motion in 2D and 3D systems, effect of static perturbations
-linear physics of resonant phenomena:
I. Experimental evidence

2. Alfvén waves, models, resonant excitation, codes
3. Energetic particle modes
4. $\mathrm{n}=\mathrm{I}$ modes
-non-linear phenomena and EP transport
I.perturbative regime
2.adiabatic regime
3.non-adiabatic regime
geometry: the Tokamak

$\mathrm{q}=$ number of toroidal field line turns number of poloidal field line turns
existence of flux surfaces: radial coordinate Ψ

$$
\nabla \mathrm{p}=\mathbf{j} \times \mathbf{B}
$$

particle orbits

[Ch. Nguyen, PhD 2010]

$\mathbf{v}_{d}=\frac{\mathrm{b}}{\Omega_{c}} \times\left(v_{\|}^{2} \kappa+\frac{v_{\perp}^{2}}{2} \frac{\nabla B}{B}\right) \quad$ with $\quad \kappa=(\mathbf{b} \cdot \nabla) \mathbf{b}$
motion mainly along the magnetic field line
curvature and gradients of the B field cause perpendicular drifts

passing and trapped particles

magn. moment: $\mu=\frac{m v_{\perp}^{2}}{2 B}$ (adiabatic invariant)

$$
E=\frac{m v_{\perp}^{2}}{2}+\frac{m v_{\|}^{2}}{2}=\mu B+\frac{m v_{\|}^{2}}{2}
$$

Mirror condition: $\quad \frac{v_{\|}^{2}\left(B_{\text {min }}\right)}{v_{\perp}^{2}\left(B_{\text {min }}\right)}<\frac{B_{\text {max }}}{B_{\text {min }}}-1$

Mirror condition for magnetic surface r :

$$
\frac{B_{\max }}{B_{\min }}-1=\frac{B_{0}\left(R_{0}+r\right)}{B_{0}\left(R_{0}-r\right)}-1=\frac{1+r / R_{0}}{1-r / R_{0}}-1=\frac{2 r / R_{0}}{1-r / R_{0}}
$$

$$
\varepsilon / R \ll 1: \quad\left|\frac{v_{\|}}{v_{\perp}}\right|<\sqrt{2 \epsilon}
$$

Fraction of trapped particles

$$
\hat{n}_{A}=\hat{e}_{r}=\left(\begin{array}{c}
\sin \vartheta \cos \varphi \\
\sin \vartheta \sin \varphi \\
\cos \vartheta
\end{array}\right)
$$

$$
\frac{n_{t}}{n}=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \phi \int_{-\sqrt{2 \epsilon}}^{\sqrt{2 \epsilon}} \cos \theta d \theta=\frac{1}{2}(\sin \sqrt{2 \epsilon}-\sin (-\sqrt{2 \epsilon})) \approx \sqrt{2 \epsilon}
$$

Estimate banana width:

i.e. deviation from magnetic surface (assume $\mathrm{v}_{\|}$small):
$\left|\vec{v}_{D}\right|=\left|\frac{m}{q B^{3}}\left(v_{\|}^{2}+\frac{1}{2} v_{\perp}^{2}\right) \vec{B} \times \nabla B\right|=\frac{m}{e B R}\left(v_{\|}^{2}+\frac{1}{2} v_{\perp}^{2}\right) \approx \frac{m}{2 e B R} v_{\perp}^{2}$

banana width

Banana width~ $v_{D} \Delta t$ (Δt :time to sample a banana orbit)
Time to complete a banana orbit: $\mathrm{v}_{\|} \times \mathrm{L}$ (length of a field line)

$$
\begin{aligned}
& L \approx R \Delta \phi=q R \Delta \theta \\
& \Delta t=L / v_{\|}=\frac{q R \Delta \theta}{v_{\|}}
\end{aligned}
$$

Banana width: $\quad w_{B}=v_{D} \Delta t=\frac{m v_{\perp}}{e B} \frac{q}{2} \frac{v_{\perp}}{v_{\|}} \Delta \theta=r_{L} \frac{q}{2} \frac{v_{\perp}}{v_{\|}} \Delta \theta$
Maximal banana width: $\Delta \vartheta=\pi$, corresponds to $\quad v_{\|} / v_{\perp}=\sqrt{2 \epsilon}$

$$
w_{B}=r_{L} \frac{\pi}{2 \sqrt{2}} \frac{q}{\sqrt{\epsilon}} \approx r_{L} \frac{q}{\sqrt{\epsilon}}
$$

trapped and passing guiding centre orbits

width of passing orbits: $\mathrm{w}_{\mathrm{B}} / 2$
toroidal precession of a banana orbit

symmetries \Leftrightarrow constants of motion

adiabatic invariants (expand Hamiltonian in asymptotic series)

$$
\begin{aligned}
J_{1} & =\frac{m}{e} \mu ; \quad \mu=\frac{m v_{\perp}^{2}}{2 B} \\
J_{2} & =\oint \frac{d \theta}{2 \pi} \frac{B_{\theta}}{B_{(0)}} m v_{\|}+e \oint \frac{d \theta}{2 \pi} \Phi
\end{aligned}
$$

magnetic momentum
'poloidal' momentum
exact invariant (if axisymmetry)
$P_{\varphi}=J_{3}=e \Psi+\frac{I(\Psi)}{B_{(0)}} m v_{\|} \quad \approx e \Psi+R m v_{\|}$'toroidal' momentum

many non-standard orbits possible:

with axissymmetry: stagnation orbits, potatoe orbits

[A. Bierwaage]
breaking axissymmetry:super-banana orbits (field ripple)

Poincare plots of particle orbits in presence of perturbations

symmetry breaking decreases EP confinement P_{ϕ} not a constant of motion any longer
static perturbations: field ripple, ELM coils, magnetic islands leads to stochastic particle orbits
n=4 RMP TFC+FI+Min_n4
Alpha particles

Advanced Courses EP, 2020
ITER, I 5 MA scenario: alpha particles outside
$\Psi n>0.7$ are not confined since field lines can become stochastic
exact number and wall load depends on details like model for field penetration, ferritic inserts and coil currents/phase

Results of F3D OFMC calculation

Fast ion species	Magnetic field	Loss power fraction [\%]	Maximum heat load $\left[\mathrm{MW} / \mathrm{m}^{2}\right]$
alpha	Case1: TF ripple alone	0.8	0.06
By NB	F9 reduce fast Ion_loss	0.8	0.02
alpha	Case2: TF ripple + FI	0.04	<0.01
By NB	Case2: TF ripple + FI	0.05	<0.01
alpha	Case3: TF ripple + FI + Min_n4	0.95	0.06
B NB	Case3: TF ripple + FI + Min_n4	7.5	0.27
a oha	Case4: TF ripple + FI + Min_n3	1.6	0.06
B NB	Case4: TF ripple + FI + Min_n3	10.0	0.21
aloha	Case5: TF ripple + FI + Max_n4	6.2	0.21
By NB	Case5: TF ripple + FI + Max_n4	26.2	0.36
alpha	Case6: Axisymmetric TF + Min_n4	0.9	0.06
By NB	Case6: Axisymmetric TF + Min_n4	7.0	0.24
By NB	Case7: Axisymmetric TF + (n=4, 30kAt, zero phase difference between upper, middle, lower coils)	0.6	0.03
By NB	Case8: Axisymmetric TF + (n=4, 15kAt)	2.4	0.09

P2-10 K. Shinohara et al.

[Ascot 2012-20I6]: plasma response is not dramatically changing the losses, RMPs can

Advanced Courses EP, 2020

Magnetic field ia a stellarator: W7-X

courtesy: M. Borchardt
magnetic field of W7-AS (\#39042) in Boozer coordinates (s=0.5)

Advanced Courses EP, 2020

b)

H. Patten et al. Plasma Phys. Control. Fusion, 60085009 (2018)

- sources and creation of a super-thermal particle population -particle motion in 2D and 3D systems, effect of static perturbations
-linear physics of resonant phenomena:
I. Experimental evidence

2. Alfvén waves, models, resonant excitation, codes
3. Energetic particle modes
4. $\mathrm{n}=\mathrm{I}$ modes
-non-linear phenomena and EP transport
I.perturbative regime
2.adiabatic regime
3.non-adiabatic regime

typical fusion plasma: important time and length scales

$\begin{array}{llllll}10^{-9} & 10^{-7} & 10^{-5} & 10^{-3} & 10^{-1} & 10^{1} \text { time[s] }\end{array}$
electron
gyration
$\omega_{c}=e B / m_{e}$

confinement time/ dimension
of fusion plasma
length[m] resonances between fast particles and plasma waves

$$
\begin{aligned}
& \begin{array}{cccc}
\mathrm{V}_{\text {th,ionen }} \ll & \mathrm{V}_{\text {Alfvén }} \approx & \mathrm{V}_{\alpha} \quad \ll & \mathrm{V}_{\text {th, } \mathrm{el}} \\
\downarrow \\
\mathrm{~V}_{\mathrm{Ti}}=0.9 \times 10^{6} \mathrm{~m} / \mathrm{s} & \downarrow & \mathrm{~V}_{\alpha}=12 \times 10^{6} \mathrm{~m} / \mathrm{s} & \downarrow
\end{array} \\
& V_{A}=8 \times 10^{6} \mathrm{~m} / \mathrm{s} \quad V_{T e}=60 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

resonant interaction: Landau damping
destabilisation of global, collective modes

$$
\mathrm{v}_{\alpha} \approx \mathrm{v}_{\text {Alfvén }}
$$

transport of energetic particles from the hot plasma centre - more difficult to reach ignition condition possible damage of confining structures by large particle flux

- remove helium ash from hot core
- Alfvén spectroscopy: frequency and localisation of mode allows to determine important plasma parameters (e.g. current profile)

Fast lon experiments at ASDEX Upgrade：NBI

Fast lon experiments at ASDEX Upgrade：NBI

Fast lon experiments at ASDEX Upgrade：NBI

Fast lon experiments at ASDEX Upgrade：NBI

梱 ．

路
Soft X－ray（central channel）

\qquad

\section*{\title{

Soft X－ray（central channel）
Soft X－ray（half radius）
1．2 ${ }_{\text {Time（sec）}}^{1.3}$
1.2

Soft X－ray（central channel）
．

正
.

Fast lon experiments at ASDEX Upgrade: ICRF

direct measurement of fast ion population:

FIDA (fast ion D α) diagnostic:

[B. Heidbrink 2010]

other diagnostics:

- reflectometry: frequency hopping mode: cut-off density and profile shape play crucial role important for determination of mode position
- interferometry
- collective Thomson scattering
- γ-ray spectroscopy
- neutron measurements
-neutral particle analyser; imaging NPA

[V. Nikolaeva, L Guimares,AUG 20I4]

fast particle driven GAE in W7-AS
\#39029

A. Weller et al. 12th International Stellarator Workshop, Sep 27 - Oct 1, Madison, USA, 1999

fast particle driven modes in W7-X

W7-X OP1.2b:
$P=1.75 \mathrm{MW}$
NBI driven modes observed discharge 20181009.024

C. Slaby et al. Nucl. Fusion 60, 112004 (2020)

- sources and creation of a super-thermal particle population -particle motion in 2D and 3D systems, effect of static perturbations
-linear physics of resonant phenomena:
I. Experimental evidence

2. Alfvén waves
3. Energetic particle modes
4. $\mathrm{n}=\mathrm{I}$ modes
-non-linear phenomena and EP transport
I.perturbative regime
2.adiabatic regime
3.non-adiabatic regime

.
號

Huge Influence

- Contributions to plasma physics
- Existence of electromagnetic-hydromagnetic ("Alfvén") waves (1942)
- Concepts of guiding center approximation, first adiabatic invariant, frozen-in flux
- Acceleration of cosmic rays (--> Fermi acceleration)
- Field-aligned electric currents in the aurora (double layer)
- Stability of Earth-circulating energetic particles (--> Van Allen belts)
- Effect of magnetic storms on Earth's magnetic field
- Alfvén critical-velocity ionization mechanism
- Formation of comet tails
- Plasma cosmology (Alfvén-Klein model)
- Books: Cosmical Electrodynamics (1950), On the Origin of the Solar System (1954), Worlds-Antiworlds (1966), Cosmic Plasma (1981)
- Wide-spread name:
- Alfvén wave, Alfvén layer, Alfvén critical point, Alfvén radii, Alfvén distances, Alfvén resonance, ...

Factoids

- His youthful involvement in a radio club at school later led (he
- His youthful involvement in a radio club at school later led (he
claimed) to his PhD thesis on "Ultra-Short Electromagnetic Waves"
- He had difficulty publishing in standard astrophysical journals (due to disputes with Sydney Chapman): Fermi "Of course" (1948)
- He considered himself an electrical engineer more than a physicist
- He distrusted computers
- The asteroid "1778 Alfvén" was named in his honor
- He was active in international disarmament movements
- The music composer Hugo Alfvén was his uncle

-

start: MHD equations

$$
\begin{aligned}
& \frac{\mathrm{d} \rho}{\mathrm{dt}}+\rho \nabla \cdot \mathrm{V}=0, \\
& \rho \frac{\mathrm{~d} \mathbf{V}}{\mathrm{dt}}+\nabla \mathrm{p}-\frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{\mu_{0}}=0, \quad \vec{\rightarrow} \quad-\omega \rho_{0} \mathbf{V}+\mathbf{k} p-\frac{(\mathbf{k} \times \mathbf{B}) \times \mathbf{B}_{0}}{\mu_{0}}=0, \\
& \begin{array}{cc}
-\frac{\partial \mathbf{B}}{\partial \mathrm{t}}+\nabla \times(\mathbf{V} \times \mathbf{B})=0, & \omega \mathbf{B}+\mathbf{k} \times\left(\mathbf{V} \times \mathbf{B}_{0}\right)= \\
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{p}{\rho^{\Gamma}}\right)=0, & -\omega\left(\frac{p}{p_{0}}-\frac{\Gamma \rho}{\rho_{0}}\right)=0,
\end{array} \\
& \begin{array}{cc}
-\frac{\partial \mathbf{B}}{\partial \mathrm{t}}+\nabla \times(\mathbf{V} \times \mathbf{B})=0, & \omega \mathbf{B}+\mathbf{k} \times\left(\mathbf{V} \times \mathbf{B}_{0}\right)= \\
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{p}{\rho^{\Gamma}}\right)=0, & -\omega\left(\frac{p}{p_{0}}-\frac{\Gamma \rho}{\rho_{0}}\right)=0,
\end{array} \\
& -\omega \rho+\rho_{0} k \cdot V=0, \\
& \text { combine into: } \quad\left(\begin{array}{ccc}
\omega^{2}-k^{2} V_{A}^{2}-k^{2} V_{S}^{2} \sin ^{2} \theta & 0 & -k^{2} V_{S}^{2} \sin \theta \cos \theta \\
0 & \omega^{2}-k^{2} V_{A}^{2} \cos ^{2} \theta & 0 \\
-k^{2} V_{S}^{2} \sin \theta \cos \theta & 0 & \omega^{2}-k^{2} V_{S}^{2} \cos ^{2} \theta
\end{array}\right)\left(\begin{array}{l}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right)=\mathbf{0} .
\end{aligned}
$$

$$
V_{\mathrm{A}}=\sqrt{\frac{\mathrm{B}_{0}{ }^{2}}{\mu_{0} \rho_{\mathrm{o}}}} \quad \mathrm{~V}_{\mathrm{S}}=\sqrt{\frac{\Gamma \rho_{0}}{\rho_{0}}}
$$

Θ : angle between k and B_{0}

Solubility condition: $\operatorname{Det}[M]=0$

$$
\begin{gathered}
\left(\begin{array}{ccc}
\omega^{2}-k^{2} V_{A}^{2}-k^{2} V_{S}^{2} \sin ^{2} \theta & 0 & -k^{2} V_{S}^{2} \sin \theta \cos \theta \\
0 & \omega^{2}-k^{2} V_{A}^{2} \cos ^{2} \theta & 0 \\
-k^{2} V_{S}^{2} \sin \theta \cos \theta & 0 & \omega^{2}-k^{2} V_{S}^{2} \cos ^{2} \theta
\end{array}\right)\left(\begin{array}{l}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right)=\mathbf{0} . \\
\left(\omega^{2}-k^{2} V_{A}^{2} \cos ^{2} \theta\right)\left[\omega^{4}-\omega^{2} k^{2}\left(V_{A}^{2}+V_{S}^{2}\right)+k^{4} V_{A}^{2} V_{S}^{2} \cos ^{2} \theta\right]=0 . \\
\omega=k V_{A} \cos \theta, \\
\omega=k V_{+}, \\
\omega=k V_{-}, \\
V_{ \pm}=\left\{\frac{1}{2}\left[V_{A}^{2}+V_{S}^{2} \pm \sqrt{\left(V_{A}^{2}+V_{S}^{2}\right)^{2}-4 V_{A}^{2} V_{S}^{2} \cos ^{2} \theta}\right]\right\}^{1 / 2}
\end{gathered}
$$

I.root:Alfven wave, 2nd and 3rd root: coupled waves with coupling strength $v_{s}{ }^{2} / v_{A}{ }^{2} \sim \beta / 2$

3 roots of dispersion relation:

$\omega=k V_{\mathrm{A}} \cos \theta$,
vs $=0: \omega=k V_{A}$.
$V_{A} \gg V_{S}: \omega \simeq k V_{S} \cos \theta$.

[fitzpatrick, lectures www]

Shear Alfvén waves in a cylinder

dispersion relation: $\quad \omega=k_{\|} v_{A}$;
periodic cylinder: phase mixing, i.e. strong damping

$$
k_{\|}=\frac{1}{R_{0}}\left(n-\frac{m}{q(r)}\right) ; \quad v_{A}(r)=B(r) / \sqrt{\mu_{0} m_{i} n(r)}
$$

n:'toroidal' mode number m : poloidal mode number

Radius

Eigenfunction

toroidal Alfvén eigenmodes (TAE)

$$
\begin{array}{ll}
\omega^{2} / v_{A}^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
k_{\| m}^{2} & 0 \\
0 & k_{\| m+1}^{2}
\end{array}\right) & \omega^{2} / v_{A}^{2}\left(\begin{array}{cc}
1 & -\epsilon \\
-\epsilon & 1
\end{array}\right)=\left(\begin{array}{cc}
k_{\| m}^{2} & \epsilon k_{\| m+1}^{2} \\
\epsilon k_{\| m}^{2} & k_{\| m+1}^{2}
\end{array}\right) \\
\omega_{1}^{2}=v_{A}^{2} k_{\| m}^{2}, \quad \omega_{2}^{2}=v_{A}^{2} k_{\| m+1}^{2} & \omega_{1,2}^{2} / v_{A}^{2}=\frac{k_{\| m}^{2}+k_{\| m+1^{ \pm}}^{2} \sqrt{\left.k_{\| m}^{2}-k_{\| m+1}^{2}\right)^{2}-4 \epsilon^{2} k_{\| m}^{2} k_{\| m+1}^{2}}}{2\left(1-\epsilon^{2}\right)}
\end{array}
$$

analogous to electron bands in solid state physics
location of gap: set $k_{/ / m}+k_{/ / m+1}=0 \rightarrow$ qTAE $=(m+l / 2) / n$

toroidal Alfvén eigenmodes (TAE)

global mode structure in the gap

weakly damped

symmetry-breaking induces more gaps

ASDEX Upgrade

ASDEX Upgrade Alfvén continuum

A 3D ideal MHD continuum: W7-AS \#56936 and TJ-2

symmetry-breaking induces more gaps:

stellarator
$k_{\|, m, n}=-k_{\|,\left(m+\delta_{m}\right),\left(n+\delta_{n} N_{\mathrm{fp}}\right)}$
$\delta_{m}, \delta_{n}=$ integer mode displacements

HAE: helicity-induced AEs MAE: mirror induced AEs

Abbreviated name	Name	δ_{m}	δ_{n}
GAE	Global Alfvén eigenmode	0	0
TAE	Toroidal Alfvén eigenmode	± 1	0
EAE	Elliptical Alfvén eigenmode	± 2	0
NAE	Noncircular Alfvén eigenmode	$\left\|\delta_{\mathrm{m}}\right\| \geqslant 3$	0
MAE	Mirror Alfvén eigenmode	0	$\pm 1, \pm 2, \ldots$
HAE	Helical Alfvén eigenmode	$\left\|\delta_{\mathrm{m}}\right\| \geqslant 1$	$\pm 1, \pm 2, \ldots$

A 3D ideal MHD continuum (W7-X)

Advanced Courses EP, 2020

‘Reversed shear’ Alfvén Eigenmodes (RSAE)

further gaps due to geodesic curvature and coupling between Alfvén and acoustic waves (see below)

$$
\Sigma_{m}\left(\omega / v_{A}\right)^{2}-k_{\| m}^{2}=\beta * F\left(\omega^{2} / c^{2}{ }_{s}-k_{\| m}^{2}\right)
$$

gaps scale with plasma beta:
$\beta=\frac{\text { kinetic pressure }}{\text { magnetic pressure }}$
\Rightarrow beta induced Alfvén eigenmode: BAE
\Rightarrow beta induced Alfvén- Acoustic eigenmode : BAAE
strongly modified in kinetic description! $\left(\omega \sim \omega_{\mathrm{t}, \mathrm{b}}\right)$
[DIIID case,
Lauber, 2012]

MHD BAAE cannot be excited - strongly damped; drift-Alfvén-type instabilities at rational surfaces -
can be excited by thermal gradients
[Heidbrink 1992, Zonca 1996,Gorelenkov 2006, Lauber 20I3, Heidbrink 2020]

Resonant drive:

Landau damping:

resonant drive:

[B. Heidbrink, 2007]
\longleftarrow Toroidal Angular Momentum $P_{\zeta}=m R v_{\zeta}-Z e \Psi$, energetic particles
free energy due to gradients of distribution function, if
$\frac{\partial F_{0}}{\partial P_{\varphi}} \gtrsim \omega$
damping if:

$$
\mathrm{v} / \omega \sim \frac{\partial F_{0}}{\partial E} \cdot \frac{\omega-\frac{\partial F_{0}}{\partial P_{\varphi}}}{\omega-\mathrm{n} \dot{\varphi}-\mathrm{m} \dot{\theta}}
$$ $\frac{\partial F_{0}}{\partial P_{\varphi}} \leqslant \omega$;

employing the conservation law for particle-wave energy exchange: due to low frequencies of Alfvén waves, a change in
energy requires a large radial displacement
\Rightarrow radial transport
optimal energy exchange for
$\mathrm{k} \perp \rho_{\mathrm{bEP}} \sim \mathrm{I}$

$$
E-\left(\frac{\omega}{n}\right) P_{\varphi}=\mathrm{const}
$$

3D analytical theory - What can we learn?

(see Kolesnichenko et al. 2002)

- proportionality to equilibrium quantities field line curvature coefficients magnetic field coefficients

$$
\frac{\gamma}{\omega_{0}} \propto A^{2} \sum_{m^{\prime} n^{\prime}}\left|\epsilon_{m^{\prime} n^{\prime}}^{\kappa}\right|^{2} \approx A^{2} \sum_{m^{\prime} n^{\prime}}\left|\epsilon_{m^{\prime} n^{\prime}}^{B}\right|^{2}
$$

- coupling is approximately given by the structure of B
\Rightarrow investigate spectrum of B
- note, that for a TAE in a large aspect ratio tokamak: $\frac{\gamma}{\omega_{0}}$ is independent of the equilibrium
- the resonance condition $\omega-k_{\|} v_{t h}=0$ determines

$$
v_{m^{\prime} n^{\prime}}^{\mathrm{res}}=v_{A}\left|1 \pm \frac{m^{\prime} \iota^{*}+n^{\prime} N_{p}}{m \iota^{*}+n}\right|^{-1}
$$

i.e. well known resonances at $v_{0}=v_{A}$ and $v_{0}=v_{A} / 3$ for a Tokamak

险

 extract possible coupling from B spectrum

 extract possible coupling from B spectrum}

W-AS

W7-X

W7-AS
A. Weller et al., Phys. Plasmas, 8, 931 (2001):

mode:

W7-X:
equilibrium:
M. Drevlak et al., Nucl. Fusion, 45, 731 (2005): from PIES calculation: practically island free

mode:

- sources and creation of a super-thermal particle population -particle motion in 2D and 3D systems, effect of static perturbations
-linear physics of resonant phenomena:
I. Experimental evidence

2. Alfvén waves, models
3. Energetic particle modes
4. $\mathrm{n}=\mathrm{I}$ modes
-non-linear phenomena and EP transport
I.perturbative regime
2.adiabatic regime
3.non-adiabatic regime

Kinetic Description
Vlasov, Fokker-Planck Equation

,	\downarrow	
Building Moments by Integration over Velocity Space \downarrow	Reduce from 6-D to 5-D \downarrow	Linearization \downarrow
Fluid Equations MHD	Gyrokinetic Theory [Littlejohn, Hahm,Brizard] \downarrow	Kinetic Wave Equations [Stix, Brambilla] \downarrow
	Self Consistent non-perturbative [Qin, 1999]	Dielectric Tensor alent
CASBD-K,NOVAK Lim CASTOA-K	it LIGKA, KINODEM GYGLES ORB5,EUTERPE,GENE,GTC	TORIC, PENN,LEMAN

```
gyro frequency >> wave frequency
```

\Rightarrow decouple/average out gyromotion from the rest of the particle's motion

$$
\mathcal{L}(\mathbf{A}, \phi)=\int d^{3} \mathbf{x}\left(\frac{\epsilon_{0} \mathbf{E}^{2}}{2}-\frac{\mathbf{B}^{2}}{2 \mu_{0}}\right)+\int d^{3} \mathbf{x}(\mathbf{j} \cdot \mathbf{A}-\rho \phi) .
$$

coordinate transform in two small parameters:
I. $\rho_{\mathrm{i}} / L_{B} \Rightarrow$ guiding centre coordinates

2. separation of perturbed and equilibrium potentials/ fields \Rightarrow "drifting rings"
\Rightarrow consistent model, energy conservation

gyro-angle averaging:

$$
\frac{1}{2 \pi} \int d \bar{\xi} e^{ \pm \varrho \cdot \nabla}=\frac{1}{2 \pi} \int d \bar{\xi} e^{ \pm \varrho \nabla_{\perp} \cos \bar{\xi}}=J_{0}\left(\frac{\varrho \nabla_{\perp}}{i}\right)
$$

quasi-neutrality:

$$
0=\sum_{a} e_{a}\left[\int J_{0} f d^{3} v+\int \frac{e_{a} \phi}{T_{a}} F_{0}\left(J_{0}^{2}-1\right)\right]
$$

combine Ampère's law with 0-th order moment of GK equation to arrive at:

linear model equations containing crucial effects for

 self-consistent description of EP driven modes:gyrokinetic equation:
propagator \rightarrow resonance

quasi-neutrality:

$$
\sum_{a} \frac{e_{a}^{2} n_{a}}{T_{a}}\left[\varrho_{a}^{2} \nabla_{\perp}^{2}\right] \phi+e_{a} \int J_{0} f d^{3} \mathbf{v}=0 ; \quad \mathbf{E}=-\nabla \phi-\frac{\partial \mathbf{A}}{\partial t} ; \quad A_{\|}=\frac{1}{i \omega}(\nabla \psi)_{\|}
$$

gyrokinetic moment equation: shear Alfven law

$$
\begin{array}{r}
-\frac{\partial}{\partial t}\left[\nabla \cdot\left(\frac{1}{v_{A}^{2}} \nabla_{\perp} \phi\right)\right]+(\mathbf{B} \cdot \nabla) \frac{\nabla \times \nabla \times \frac{c}{i \omega}(\nabla \psi)_{\|}}{B^{2}}+\left[\frac{1}{i \omega} \nabla(\nabla \psi)_{\|} \times \mathbf{b}\right] \cdot \nabla \frac{\mu_{0} j_{0 \|}}{B} \\
=-\sum_{a} \mu_{0} \int d^{3} v\left(e \mathbf{v}_{d} \cdot \nabla J_{0} f\right)_{a}+\frac{3}{4} \frac{\mu_{0} e_{a}^{2} n_{a}}{T_{a}} \varrho_{a}^{4} \nabla_{\perp}^{4} \frac{\partial}{\partial t} \phi+\sum_{a} \frac{m_{a} n_{a}}{m_{i} n_{i}} \frac{\omega_{a}^{*}}{v_{A}^{2}} \nabla_{\perp}^{2} \phi
\end{array}
$$

'pressure' tensor - curvature drift coupling
[LIGKA model]
in toroidal geometry: coupling via curvature drifts:

$$
\begin{aligned}
& -\omega^{2} \nabla_{\perp} \frac{1}{v_{A}^{2}} \nabla_{\perp} \phi+\left[\nabla(\nabla \psi)_{\|} \times \mathbf{b}\right] \cdot \nabla\left(\frac{\mu_{0} j_{0 \|}}{B}\right)+(\mathbf{B} \cdot \nabla) \frac{\left(\nabla \times \nabla \times(\nabla \psi)_{\|}\right) \cdot \mathbf{B}}{B^{2}} \\
& =-(i \omega)^{2} \mu_{0} \sum_{a} e_{a} \int \frac{\mathbf{v}_{d, a} \cdot \nabla}{i \omega} J_{0} f_{a} d^{3} \mathbf{v} \quad \text { (current equation) }
\end{aligned}
$$

combine with QN $(\Phi-\Psi) \Rightarrow$ dispersion relation (no fast ions):

$$
\begin{gathered}
\Sigma_{\mathbf{m}} \omega^{2}\left(1-\frac{\omega_{* p}}{\omega}\right)-k_{\|}^{2} \omega_{A}^{2} R_{0}^{2}=2 \frac{v_{t h i}^{2}}{R_{0}^{2}}\left(-\left[H\left(x_{m-1}\right)+H\left(x_{m+1}\right)\right]+\right. \\
\left.\tau\left[\frac{N^{m}\left(x_{m-1}\right) N^{m-1}\left(x_{m-1}\right)}{D^{m-1}\left(x_{m-1}\right)}+\frac{N^{m}\left(x_{m+1}\right) N^{m+1}\left(x_{m+1}\right)}{D^{m+1}\left(x_{m+1}\right)}\right]\right)
\end{gathered}
$$

well-known dispersion relation [Zonca 1996,2009, Lauber 2009]

=local solution of linearised GK set of equations

[LIGKA model]

global solutions: local and non-local damping

local and non-local damping

Advanced Courses EP, 2020

Stradivari frequency response [Jansons,2004]

frequency response of ASDEX Upgrade (using linear GK model)

Scan throughout the gap region
in order to find all the modes in and around a gap: drive perturbation at plama boundary, sweep frequency and measure plasma response

Kinetic TAEs

two KAWs propagating in opposite directions form a standing wave: KTAE

nonlinear models and codes

EUTERPE:

- gyrokinetic simulations for stellarators
- nonlinear, electromagnetic
- global simulation domain: full flux-surface, full radius
treatment of non local effects: e.g. profiles, neoclassical electric field
- multiple kinetic species: ions, electrons, fast ions/impurities
- pitch angle collision operator
- includes models of differing complexity:

EUTERPE (full kinetic)
FLU-EUTERPE (electron fluid hybrid)
CKA-EUTERPE (perturbative fast particle interaction)
relative to HAGIS/LIGKA (tokamak): similar model
requires experts to run and to evaluate results (no black-box code)
run time depends on the case: hours to days on 32-512 processors
more numerically robust and economical
more physically complete

- PIC: charge and current calculated on grid using markers
- 4th order Runge-Kutta scheme to solve gyrokinetic equations of motion in phase space.
- Mixed variables formulation: mitigation of cancellation problem - Mishchenko A, Könies A, Kleiber R and Cole M 2014 Phys. Plasmas 21092110

$$
\begin{gathered}
\frac{\partial f_{1 s}}{\partial t}+\dot{\mathbf{R}} \cdot \frac{\partial f_{1 s}}{\partial \mathbf{R}}+\dot{v}_{\|} \frac{\partial f_{1 s}}{\partial v_{\|}}=-\dot{\mathbf{R}}^{(1)} \cdot \frac{\partial F_{0 s}}{\partial \mathbf{R}}-\dot{v}_{\|}^{(1)} \frac{\partial F_{0 s}}{\partial v_{\|}} \\
\int \frac{q_{i} F_{0 i}}{T_{i}}(\phi-\langle\phi\rangle) \delta(\mathbf{R}+\boldsymbol{\rho}-\mathbf{x}) \mathrm{d}^{6} Z=\bar{n}_{1 i}-\bar{n}_{1 e} \\
\left(\frac{\beta_{i}}{\rho_{i}^{2}}+\frac{\beta_{e}}{\rho_{e}^{2}}-\nabla_{\perp}^{2}\right) A_{\|}^{(\mathrm{h})}-\nabla_{\perp}^{2} A_{\|}^{(\mathrm{s})}=\mu_{0}\left(\bar{j}_{\| 1 i}+\bar{j}_{\| 1 e}\right)
\end{gathered}
$$

Global, non-linear, collisional, δf, neglects $\delta B_{\|}$

CKA-EUTERPE

- linearized equations of reduced MHD transformed to an eigenvalue problem:

$$
\begin{aligned}
& \omega^{2}\left[\nabla \cdot\left(\frac{1}{v_{A}^{2}} \nabla_{\perp} \phi\right)+\frac{3}{4} \nabla \nabla_{\perp}\left(\rho_{i}^{2} \frac{1}{v_{A}^{2}} \nabla \cdot \nabla_{\perp} \phi\right)\right]=-\nabla \cdot\left[\mathbf{b} \nabla^{2}(\mathbf{b} \nabla) \phi\right] \\
&-\nabla \cdot\left[\mathbf{b} \nabla\left(\mu_{0} \frac{j_{\|}}{B} \mathbf{b} \times \nabla \Phi\right)\right]-\nabla \cdot\left[\frac{\mu_{0} p_{\perp}^{(1)}}{B^{2}} \mathbf{b} \times \nabla B\right]-\nabla \cdot\left[\frac{\mu_{0} p_{\|}^{(1)}}{B^{2}} \mathbf{b} \times \kappa\right]
\end{aligned}
$$

- The CKA code is used to solve the MHD equations in 3D real magnetic geometry
- Determines the mode frequency ω and the mode structure $\phi(r), A_{\| \mid}(r)$

$$
E_{\|}=-\nabla \phi-\frac{\partial A_{\|}}{\partial t}=0
$$

- B-splines in all three directions, direct eigenvalue solvers from PETSc/SLEPc framework
- phase factor isolating a dominating Fourier mode as in EUTERPE
\Downarrow
- uses mode structure ($A_{\|}, \phi$) and frequency from CKA code
- evolves Vlasov or Fokker-Planck equation in the EUTERPE framework for fast particles in the given field
- evolves amplitudes and phases of $\left(A_{\|}, \phi\right)$ according to the mode evolution equations
- $v_{\|}$-formulation of GK equations

Alfvén eigenmodes in stellarators: critical beta

$(5,-2),(6,-2)$ TAE in W7-AS

(4,-4), (5,-4) TAE in W7-X

destabilization by temperature gradients

TAE mode frequencies and growth/ damping rates from a local computation
with a temperature gradient:

without a temperature gradient:

LIGKA/HAGIS model

similar to CKA-EUTERPE, in 2D

difference: non-perturbative mode structures with $\mathrm{E}_{/ /} \neq 0$ new: IMAS capabilities; various local and global models consistently embedded for time-dependent scenario analysis

ITER pre-fusion

- sources and creation of a super-thermal particle population -particle motion in 2D and 3D systems, effect of static perturbations
-linear physics of resonant phenomena:
I. Experimental evidence

2. Alfvén waves, models, resonant excitation, codes
3. Energetic particle modes
4. $\mathrm{n}=\mathrm{I}$ modes
-non-linear phenomena and EP transport
I.perturbative regime
2.adiabatic regime
3.non-adiabatic regime

Energetic particle modes

- for strong drive (steep gradients), modes in the Alfvén continuum can be driven
- mode frequency purely determined by energetic particles: $\omega \sim \omega_{t, f a s t}$
- both gap and energetic particle continuum modes can be described with generalised fishbone dispersion relation [Chen, Zonca 2006]
- often bursty behaviour (strong damping!)
- often strongly 'chirping': mode follows fast evolution of gradient in real and phase space \Rightarrow no time to form eigenmode by radial localisation
- in present day machines usually seen due to strong NBI heating (abrupt large-amplitude event: ALE)
- linear EPM threshold can be determined [A. Koenies, A. Mishchenko] - non-linear behaviour very complex [VIad, Zonca,Briguglio 2006]

the fishbone dispersion relation [Chen, 1984]

$$
\begin{gathered}
\sum_{\mathrm{m}} \omega^{2}\left(1-\frac{\omega_{* p}}{\omega}\right)-k_{\|}^{2} \omega_{A}^{2} R_{0}^{2}=2 \frac{v_{t h i}^{2}}{R_{0}^{2}}\left(-\left[H\left(x_{m-1}\right)+H\left(x_{m+1}\right)\right]+\right. \\
\left.\tau\left[\frac{N^{m}\left(x_{m-1}\right) N^{m-1}\left(x_{m-1}\right)}{D^{m-1}\left(x_{m-1}\right)}+\frac{N^{m}\left(x_{m+1}\right) N^{m+1}\left(x_{m+1}\right)}{D^{m+1}\left(x_{m+1}\right)}\right]\right) \\
\delta W_{\text {hot }} \sim \int d E d \mu d P_{\varphi} d \theta d \varphi \sum_{k=-\infty}^{\infty} \frac{\partial F}{\partial E} \frac{\left(\omega-\bar{\omega}_{*}\right)\left|\mathcal{L}_{k}\right|^{2}}{\omega-\omega_{\text {prec }}-(n q-k) \omega_{t, b}} \\
\delta \hat{W}_{\text {core }}^{\prime}=3 \pi \Delta q_{0}\left(13 / 144-\beta_{p s}^{2}\right)\left(r_{s}^{2} / R_{0}^{2}\right)
\end{gathered}
$$

with $\beta_{p s}=-\left(R_{0} / r_{s}^{2}\right)^{2} \int_{0}^{r_{s}} r^{2}(d \beta / d r) d r, \Delta q_{0}=1-q(r=0)$ and $\beta=8 \pi P / B_{0}^{2}$
particle- wave- energy- exchange by resonant interaction

$$
\begin{aligned}
\delta W_{s}= & \frac{\pi}{M_{s}^{2}}\left\{\sum_{\sigma}\right\} \int d s \int d \varphi \int d \mu d \epsilon\left(-\int \frac{d \vartheta}{\left|v_{\|}\right|} \sqrt{g} B\right) \sum_{n, m} \sum_{p=-\infty}^{\infty} e^{-i \frac{2 \pi}{N_{p}}\left(n^{\prime}-n\right) \varphi} \times \\
& \times\left(\frac{\partial F_{s}}{\partial \epsilon}\right)_{\mu} \frac{\omega-2 \pi\left(\frac{n}{N_{p}} J-m I\right) \omega^{*}}{m\left\langle\omega_{d}^{\vartheta}\right\rangle+\frac{n}{N_{p}}\left\langle\omega_{d}^{\varphi}\right\rangle+\left\{\begin{array}{c}
\sigma(p+n q) \\
p
\end{array}\right\} \omega_{\left\{\begin{array}{l}
t \\
b
\end{array}\right\}}-\omega} L_{m^{\prime} n^{\prime}}^{(1) *} \mathcal{M}_{p n}^{m^{\prime} n^{\prime} *} L_{m n}^{(1)} \mathcal{M}_{p n}^{m n}
\end{aligned}
$$

definition of $\mathcal{M}_{p n}^{m^{\prime} n^{\prime}}$:
for passing particles:
perturbed particle Lagrangian:
$\mathcal{M}_{p n}^{m^{\prime} n^{\prime}}=\left\langle e^{i\left[2 \pi\left(m^{\prime}+n^{\prime} q\right) \vartheta^{\prime \prime}-(p+n q) \omega_{t} t^{\prime \prime}\right]}\right\rangle_{\vartheta^{\prime \prime}}$
for reflected particles:
$\mathcal{M}_{p n}^{m^{\prime} n^{\prime}}=\left\langle e^{2 \pi i\left(m^{\prime}+n^{\prime} q\right) \vartheta^{\prime \prime}} \cos \left(p \omega_{b} t^{\prime \prime}\right)\right\rangle_{\vartheta \prime \prime}$
$\langle\ldots\rangle$ denotes the transit or bounce average
the fishbone dispersion relation [Chen, I984]

$$
-i \Lambda+\delta W_{\text {core }}+\delta W_{h o t}=0
$$

$\operatorname{Re}\left[\Lambda^{2}\right]<0:$
 gap modes
 $\operatorname{Re}\left[\Lambda^{2}\right]>0$: EP modes in continuum

the combined effect of δW core and $\operatorname{Re}[\delta W h o t]$ is to 'move' the mode away from the local continuum solution and determines if the mode can exist -> 'Alfven zoo'
for EPMs, the mode frequency is set by the EPs the drive has to overcome continuum damping i.e. $\operatorname{lm}(\delta \mathrm{Whot})>\operatorname{Re}(\Lambda)$
theory for linear onset well developed [Zonca PoP, 2005]

- sources and creation of a super-thermal particle population -particle motion in 2D and 3D systems, effect of static perturbations
-linear physics of resonant phenomena:
I. Experimental evidence

2. Alfvén waves
3. Energetic particle modes
4. $\mathrm{n}=1$ modes
-non-linear phenomena and EP transport
I.perturbative regime
2.adiabatic regime
3.non-adiabatic regime

the fishbone cycle

[PDX: McGuire, 1983]

Pulse No: 54300 channel: 002 Amplitude

[JET, F. Nabais, 2005]

$\mathrm{n}=\mathrm{I}$ fishbone

- reminder: MHD stability of $\mathrm{n}=\mathrm{I}, \mathrm{m}=\mathrm{I}$ ideal kink mode is determined by higher order $O\left(\varepsilon^{4}\right)$
- therefore, small, non-ideal terms like the EP pressure can compete
- both situations are possible: stabilisation and destabilisation
- stabilisation: the conservation of the third adiabatic invariant
$P_{\varphi}=J_{3}=e \Psi+\frac{I(\Psi)}{B_{(0)}} m v_{\|} \quad \approx e \Psi+R m v_{\|}$'toroidal' moment
corresponds to conservation of poloidal flux through the area described by precessional drift motion in toroidal direction

$\mathrm{n}=\mathrm{I}$ fishbone

-adiabaticity condition is fulfilled when precessional drift frequency is fast compared to mode frequency -if perturbation tries to adiabatically change the flux through these orbits, the orbits have to shift or tilt in order to preserve the flux
-depending on the EP distribution function, this can result a positive work ($\delta \mathrm{W}$), i.e. the mode has to do work on the particles, i.e. the EP are stabilising
-this is the mechanism for sawtooth stabilisation by EPs, i.e. the kink mode that triggers the crash is suppressed

$\mathrm{n}=\mathrm{I}$ fishbone

-if the 3rd adiabatic invariant breaks down, i.e. when EPs are not fast enough compared to mode frequency, the mode can be destabilised

- in this case the EP radial gradient at the resonance together with the background diamagnetic effects provide a drive for the (I,I) mode
-two branches: diamagnetic and precessional fishbones; precessional resonance:

$$
\delta W_{h o t} \sim \int d^{3} v d r \frac{\partial f}{\partial r} \frac{\omega}{\omega-\omega_{D h}} \phi(\omega, \mathbf{v}, r)
$$

-diamagnetic branch: EP drive (density) is not large enough: drive due to gradient of background thermal ions, optimal for $\omega_{*_{i}} \sim \omega_{\text {prec,EP }}$

$\mathrm{n}=\mathrm{I}$ fishbone

$$
-\frac{i\left(\omega\left(\omega-\omega_{* i}\right)\right)^{1 / 2}}{\omega_{A}}+\delta W_{M H D}+\delta W_{h o t}=0
$$

[Porcelli 1991]

also a non-bursting $\mathrm{n}=\mathrm{I}$ kink mode, so called LLM (long lived mode) was recently observed at MAST and NSTX

- sources and creation of a super-thermal particle population -particle motion in 2D and 3D systems, effect of static perturbations
-linear physics of resonant phenomena:
I. Experimental evidence

2. Alfvén waves
3. Energetic particle modes
4. $\mathrm{n}=1$ modes
-non-linear phenomena and EP transport
I.perturbative regime
2.adiabatic regime
3.non-adiabatic regime
non-linear mode saturation: $\left|\gamma_{L} / \omega\right| \sim 10^{-2}$

- gradient of energetic particles flattens
- radial redistribution \Leftrightarrow loss of toroidal momentum

$$
\left(E-\frac{\omega}{n} P_{\zeta}\right)=\text { const } \quad P_{\zeta} \propto \cdot \Psi
$$

-mode amplitude grows
-saturation amplitude scales $\gamma^{2 \sim A}$
non-linear mode saturation: $\left|\gamma_{L} / \omega\right| \sim 10^{-2}$

non-linear interaction of several modes

non-linear evolution: phase space stochastisation

investigation for modes with very different frequencies:

- modes are coupled by particles that are trapped radially between two modes
- linear dominant modes can become non-linearly sub-dominant and vice versa
multiple resonances overlap in phase space and at a relatively low critical mode amplitude ($10^{-4} \mathrm{~B} / \mathrm{B}$ vs. $10^{-3} \mathrm{~B} / \mathrm{B}$ for single modes)
\Rightarrow not only resonant particles are transported

Advanced Courses EP, 2020

particle losses - synthetic diagnostic

follow particle orbits up to the wall/detector

[M Schneller, PhD 2013]
in weak non-linear regime:
hybrid models predict roughly the flattening of the EP radial profile

[B. Heidbrink, DIII-D, PRL 20I0]

[R.White,20II]

NBI power scan was performed to investigate profile stiffness

- Stored fast ion energy scales as $\sim P_{\text {NBI }}{ }^{\wedge} 0.53$ for $\mathrm{P}_{\mathrm{NB}}>6.25 \mathrm{MW}$.
- Fast-ion confinement degrades steadily with increasing power but a sharp transition to stiff transport is not observed.

Y. Todo[TCM 2015]: DIII-D case

Evolution of fast ion energy flux brought about by AEs (1)

using the QL approximation, smaller EP transport was found! Importance of avalanches!

ITER, I5MA 'standard scenario'

sea of weakly unstable TAEs expected with small EP transport

ITER I5MA, nominal α-particle density
boundaries? for artificially reduced damping or higher EP pressure gradient, EP avalanches are found

recently confirmed by fully GK non-linear ORB5 simulations

ITER I5MA, α-particle density doubled
T. Hayward-Schneider [PhD,TUM 2020]

fast-ion drive is insufficient to overcome the background-plasma damping (CKAhybrid model)
C. Slaby et al. Nucl. Fusion 60, 112004 (2020)

outline

-sources and creation of a super-thermal particle population in a hot Tokamak plasma
-the effect of static perturbations
-linear physics of resonant phenomena:
I. Experimental evidence
2. Alfven and Alfven-Acoustic waves
3. Energetic particle modes
4. $n=I$ modes
-non-linear phenomena:
5.perturbative regime
6.adiabatic regime
7.non-adiabatic regime
-electric field of the mode tries to flatten distribution function
-relaxation processes (v) try to reestablish original distribution function -depending on the balance between the
 linear drive γ_{L} and the damping γ_{d}, four regimes with substantially different EP transport are found:

$$
\hat{v}=v / \gamma=v /\left(\gamma_{L}-\gamma_{d}\right)
$$

\rightarrow linear mode damping/drive is crucially important for non-linear evolution!
lecture series by F. Zonca:
http://www.afs.enea.it/zonca/references/seminars/IFTS_springl0/

a) steady state
b) periodic modulation
c) chaotic regime
d) explosive regime
complex non-linear dynamics
a) steady state
b) periodic modulation
c) chaotic regime
d) explosive regime

Advanced Courses EP, 2020

holes and clumps form in phase space and propagate while modifying the mode frequency

phase space structures

add pure electron drag：

都

都

．

號

$$
5
$$

-

dedicated experiments at ASDEX Upgrade (BAE)

Slightly increased density: γ_{d} becomes larger, as well as \hat{v}.
qualitative theoretical prediction correct [Ph. Lauber, C Classen, IAEATCM meeting 2011] quantitative modeling challenging: phase space resolution!

classification of parameter space

[M Lesûtr 2012]
change of background damping was taken into account: metastable modes

Case 1 has twice the linear growth rate and twice the damping rate compared to case 2.
small drive in W7-X may make chirping parabola small and difficult to observe

C. Slaby et al.Nucl. Fusion 59046006 (2019)

mode saturation amplitude analytically scales with $\nu^{2 / 3}$ (valid if linear growth rate much larger than damping)

- calculations with CKA-EUTERPE
- depend on parameter regime in tokamaks, ω_{b} seems to determine transition between regimes
- found to be different in W7-X (at least for parameters and modes chosen): saturation regime in W7-X is radial decoupling
C. Slaby et al. Nucl. Fusion 58, 082018 (2018)

outline

-sources and creation of a super-thermal particle population in a hot Tokamak plasma
-the effect of static perturbations
-linear physics of resonant phenomena:
I. Experimental evidence
2. Alfven and Alfven-Acoustic waves
3. Energetic particle modes
4. $n=I$ modes
-non-linear phenomena:
5.perturbative regime
6.adiabatic regime
7.non-adiabatic regime
beyond the 'adiabatic' regime: $|\gamma / \omega|>10^{-2}$

Energetic ion losses by TAE Avalanche in NSTX

Coupling between multiple TAEs with $\Delta n_{\text {tor }}=1$, enhanced losses observed during explosive modes' growth

squared bi-coherence [\%]

- Coupling generates higher/lower frequency modes
- Multiple modes follow similar dynamic during the burst
- Transition from single- to multi-mode regime
beyond the 'adiabatic' regime: $|\gamma / \omega|>10^{-2}$
adiabatic: $\quad \frac{d \omega}{d t} \ll \omega_{b}^{2} \quad \begin{gathered}\text { trapping frequency of resonant particle } \\ \text { in the wave }\end{gathered}$
i.e. particles are trapped long in the wave compared to frequency chirp
if violated, the wave can saturate in a few bounce times: ballistic radial transport can occur:

Advanced Courses EP, 2020

[HMGC team, Frascati, 2006]

Abrupt Large Event (ALE) at JT60 (NNBI)

MEGA code: $400 \mathrm{t}_{\text {Alfven }}=0.3 \mathrm{~ms}$
[A Bierwaage, NF 2013]
$\mathrm{n}=\mathrm{I}$ TAE burst seem to have some similarity to 'fast sweeping' and 'ALE' at JT-60U

JT-60U: K. Shinohara et al, 2002-2004

JT-60U: $\mathrm{v}_{\mathrm{i}} / \mathrm{v}_{\mathrm{A} 0} \sim \mathrm{I} .3$; NB: 350 keV DIII-D: $\mathrm{v}_{\mathrm{f}} / \mathrm{v}_{\mathrm{A} 0} \sim 0.4$; NB: 80 keV AUG: $\quad \mathrm{v}_{\mathrm{f}} / \mathrm{V}_{\mathrm{A} 0} \sim 0.45 ; \mathrm{NB}: 93 \mathrm{keV}$

- $\mathrm{n}=\mathrm{I}$ TAE bursts seem to trigger EGAMs
- other modes seen at intermediate frequencies
0.70
0.71
0.72
time[s]

Chirping Alfvénic modes in TJ-II

- ECRH is sufficient but not necessary for chirping
- single helicity mode model
- existence of ι window for chirping
measurement using HBIP
A.V. Melnikov et al., Nucl. Fusion 56, 112019 (2016)

summary

- 'errors’ in the axisymmetric fields of a Tokamak cause particle losses since EP drift orbits are larger than the thermal particle orbits and have more energy, they are more dangerous for the first wall
- resonant wave-particle interaction can radially redistribute EPs and cause losses
- the damping and the global mode structure is crucial for the linear stability and non-linear saturation of the modes
- the saturation process is very complicated: weakly non-linear and strong non-linear regime show very different behaviour due to the formation of phase space structures and the formation of ballistic avalanches, role of collisions
- role of non-linear mode-mode coupling, excitation of zonal structures
- prediction for ITER/DEMO/HELIAS reactors is challenging - which regime is relevant?
- is there overlap between resonant/ballistic core transport and edge losses due to static perturbation fields? summary/outlook
recent progress on several fronts of model validation for EP physics:
- analytical/ semi-analytical models \& reduced models that can make contact to analytical descriptions (verification/physics understanding, large parameter range)
- code integration for quantitative predictions (smaller parameter range)
- global EM non-linear GK simulations (restricted parameter range)
to be done: implement EP models in tranport codes (IMAS/WPCD) (large amount of automatisation required)
experimental 'opportunities' for code validation:
- theory/simulation has to drive and trigger experiments for validating models ('exotic' regimes) at present day machines (JET/TCV/ASDEX Upgrade,West,..)
- MAST Upgrade (EP avalanches, low-n though...)
- W7-X
- JET- DT (I-2 years)
- JT60-SA (energetic NNBI) will play important role within next 10 years
- DTT (intermediate n's possible)

Adidicionalinides
Adidicionalinides

Additional slides

 \qquad

\qquad

\qquad

\square

Abstract

\qquad

\qquad
\qquad
\qquad
\qquad

Linear Gyrokinetic model: Qin,Rewoldt, Tang [1999-2006] Ph Lauber [2003-2009]

Starting point: generalised gyrokinetic Maxwell-Vlasov System
[Hahm, Brizard, Sugama,...]

$$
\left[\frac{\partial}{\partial t}+\left\{\overline{\mathbf{Z}}, \bar{H}_{a}(\overline{\mathbf{Z}}, t)\right\} \cdot \frac{\partial}{\partial \overline{\mathbf{Z}}}\right] F_{a}(\overline{\mathbf{Z}}, t)=0
$$

Linearise:

$$
\begin{aligned}
{\left[\left\{\overline{\mathbf{Z}}, \bar{H}_{1}(\overline{\mathbf{Z}}, t)\right\} \cdot \frac{\partial}{\partial \overline{\mathbf{Z}}}\right] F_{a 0}(\overline{\mathbf{Z}}) } & +\left[\frac{\partial}{\partial t}+\left\{\overline{\mathbf{Z}}, \bar{H}_{0}(\overline{\mathbf{Z}})\right\} \cdot \frac{\partial}{\partial \overline{\mathbf{Z}}}\right] f_{a}(\overline{\mathbf{Z}}, t)=0 \\
\mathbf{z}_{a}=\left(\mathbf{x}_{a}, v_{a \|}, \mu_{a 0}, \theta_{a}\right) & \rightarrow \mathbf{Z}_{a}=\left(\mathbf{X}_{a}, U_{a}, \mu_{a}, \xi_{a}\right) \quad \text { guiding-centre } \\
\mathbf{Z}_{a}=\left(\mathbf{X}_{a}, U_{a}, \mu_{a}, \xi_{a}\right) & \rightarrow \overline{\mathbf{Z}}_{a}=\left(\overline{\mathbf{X}}_{a}, \bar{U}_{a}, \bar{\mu}_{a}, \bar{\xi}_{a}\right) \quad \text { gyro-centre }
\end{aligned}
$$

work out brackets and use: $E=\mathrm{H}_{0}=\mathrm{mU}^{2} / 2+\mu \mathrm{B}$

$$
\frac{\partial f}{\partial t}+\left(\bar{U} \mathbf{b}+\mathbf{v}_{d}\right) \cdot \nabla f=\frac{c \mathbf{b}}{e B} \cdot\left(\nabla F_{0} \times \nabla H_{1}\right)+\frac{\partial F_{0}}{\partial E}\left(\bar{U} \mathbf{b}+\mathbf{v}_{d}\right) \cdot \nabla H_{1}
$$

reminder: curvature drift

$$
\begin{aligned}
& \frac{\partial f}{\partial t}+\left(\bar{U} \mathbf{b}+\mathbf{v}_{d}\right) \cdot \nabla f=\frac{c \mathbf{b}}{e B} \cdot\left(\nabla F_{0} \times \nabla H_{1}\right)+\frac{\partial F_{0}}{\partial E}\left(\bar{U} \mathbf{b}+\mathbf{v}_{d}\right) \cdot \nabla H_{1} \\
& \left\{\overline{\mathbf{Z}}, H_{0}\right\}=-\frac{c \mathbf{b}}{e B} \times(\bar{\mu} \nabla B)+\frac{\left(\mathbf{B}+\nabla \times \frac{m c}{e} \bar{U} \mathbf{b}\right) \bar{U}}{B}=-\frac{c \mathbf{b}}{e B} \times(\bar{\mu} \nabla B)+\bar{U} \mathbf{b}+\mathbf{V}_{d} \\
& \mathbf{V}_{d} \equiv \frac{c m U}{e B} \nabla \times U \mathbf{b}
\end{aligned}
$$

in order to arrive at usual expression:

$$
\mathbf{v}_{d}=-\frac{c \mathbf{b}}{e B} \times\left(m \bar{U}^{2}(\mathbf{b} \cdot \nabla) \mathbf{b}+\bar{\mu} \nabla B\right)
$$

one has to take into account that:

$$
\mathbf{B}_{a}^{*} \equiv \nabla \times \mathbf{A}_{a}^{*} \quad \text { and } \quad B_{a \|}^{*} \equiv \mathbf{B}_{a}^{*} \cdot \mathbf{b} .
$$

$$
\mathbf{A}_{a}^{*}\left(\mathbf{X}_{a}, U_{a}, \mu_{a}\right)=\mathbf{A}_{0}\left(\mathbf{X}_{a}\right)+\epsilon_{B} \frac{m_{a} c}{e_{a}} U_{a} \mathbf{b}\left(\mathbf{X}_{a}\right)-\epsilon_{B}^{2} \frac{m_{a} c^{2}}{e_{a}^{2}} \mu_{a} \mathbf{W}\left(\mathbf{X}_{a}\right)
$$

frequency ordering: restrict system to shear Alfvén wave frequencies and below by neglecting the fast wave:

$$
\mathbf{A}_{1}=A_{\|} \mathbf{b} \quad \text { or } \quad \mathbf{A}_{\perp}=0
$$

ω_{A} is small compared to the gyrofrequency,
note: if the fast wave physics and hf physics is needed, the system of equations has to be solved for the perpendicular components of A and a 'gauge' function
S containing the gyro-motion (3 more equations!)
[gyro-gauge theory, H. Qin, 1999]
now: quasi-neutrality and Ampère's law have to be derived by building moments: density, flows, current, pressure,...

GK equation is written in gyro-centre variables! back-transform in real space coordinates needed:

$$
\begin{gathered}
\phi=\phi_{0}(\mathbf{x})+\Delta \phi_{1}(\mathbf{x}, t) \\
0=-4 \pi \sum_{a} e_{a} \int d^{6} \overline{\mathbf{Z}}_{a}(\overline{\mathbf{Z}}) \cdot \delta\left[\overline{\mathbf{X}}+\bar{\varrho}_{a 0}(\overline{\mathbf{Z}})-\mathbf{x}\right] \cdot\left(F_{a}(\overline{\mathbf{Z}}, t)+\Delta \frac{e}{B} \tilde{\psi}_{a} \frac{\partial F_{a}(\overline{\mathbf{Z}}, t)}{\partial \mu}\right) \\
\tilde{\phi}_{1}\left(\overline{\mathbf{X}}_{a}+\epsilon_{B} \bar{\varrho}_{a}, t\right)=\phi_{1}\left(\overline{\mathbf{X}}_{a}+\epsilon_{B} \bar{\varrho}_{a}, t\right)-\left\langle\phi_{1}\left(\overline{\mathbf{X}}_{a}+\epsilon_{B} \overline{\boldsymbol{\varrho}}_{a}, t\right)\right\rangle \\
\overline{\mathbf{v}}_{a 0} \cdot \mathbf{A}_{1}\left(\overline{\mathbf{X}}_{a}+\epsilon_{B} \overline{\boldsymbol{\varrho}}_{a}, t\right)=\overline{\mathbf{v}}_{a 0} \cdot \mathbf{A}_{1}\left(\overline{\mathbf{X}}_{a}+\epsilon_{B} \bar{\varrho}_{a}, t\right)-\left\langle\overline{\mathbf{v}}_{a 0} \cdot \mathbf{A}_{1}\left(\overline{\mathbf{X}}_{a}+\epsilon_{B} \bar{\varrho}_{a}, t\right)\right\rangle \\
\tilde{\psi}_{a}\left(\overline{\mathbf{Z}}_{a}, t\right)=e_{a} \tilde{\phi}_{1}\left(\overline{\mathbf{X}}_{a}+\epsilon_{B} \bar{\varrho}_{a}, t\right)-\frac{e_{a}}{c} \overline{\mathbf{v}}_{a 0} \cdot \mathbf{A}_{1}\left(\overline{\mathbf{X}}_{a}+\epsilon_{B} \bar{\varrho}_{a}, t\right)
\end{gathered}
$$

split off adiabatic part: (symmetry, numerics)

$$
\begin{aligned}
& f=h+H_{1} \frac{\partial F_{0}}{\partial E}-\left[e \frac{\partial F_{0}}{\partial E}-\frac{c \nabla F_{0}}{i \omega B} \cdot(\mathbf{b} \times \nabla)\right] J_{0} \psi \\
& \frac{\mathbf{\omega}_{*}}{\partial t}+\left(U \mathbf{b}+\mathbf{v}_{d}\right) \cdot \nabla h=\left[\frac{c \mathbf{b}}{\frac{c}{e B} \times \nabla F_{0}} \cdot \nabla-\frac{\partial F_{0}}{\partial E} \frac{\partial}{\partial t}\right) J_{0}\left[\phi-\left(1-\frac{\hat{\omega}_{d}}{\omega} \psi\right)\right] \\
& \hat{\omega}_{d}=\frac{\mathbf{v}_{d}}{i} \cdot \nabla
\end{aligned}
$$

use Maxwellian distribution function for background electrons and ions
include toroidicity: particle orbits are complicated - use particle tracing to calculate kinetic quantities

$$
\begin{aligned}
\hat{h}= & i e \sum_{m} \int_{-\infty}^{t} d t^{\prime} e^{i\left[n\left(\varphi^{\prime}-\varphi\right)-m\left(\theta^{\prime}-\theta\right)-\omega\left(t^{\prime}-t\right)\right]} e^{-i m \theta} \\
& \frac{\partial F_{0}}{\partial E}\left[\omega-\hat{\omega}_{*}\right] J_{0}\left[\phi_{m}\left(r^{\prime}\right)-\left(1-\frac{\omega_{d}\left(r^{\prime}, \theta^{\prime}\right)}{\omega}\right) \psi_{m}\left(r^{\prime}\right)\right]
\end{aligned}
$$

rewrite phase factor in terms of bounce and drift motion:

$$
\begin{gathered}
n\left(\varphi^{\prime}-\varphi\right)-m\left(\theta^{\prime}-\theta\right)=\int_{t}^{t^{\prime}} d t^{\prime \prime}\left(n \frac{d \varphi}{d t^{\prime \prime}}-m \frac{d \theta}{d t^{\prime \prime}}\right) \\
\omega_{D}=n\left(\frac{d \varphi}{d t}-q\left(r^{0}\right) \frac{d \theta}{d t}\right) \\
\omega_{D}^{0}=\frac{1}{\tau_{b, t}} \int d t \omega_{D} ; \quad S_{m}\left(r^{0}\right)=n q\left(r^{0}\right)-m \\
W=W(t)=\int_{0}^{t} d t^{\prime \prime} \Delta \omega_{D} ; \quad W^{\prime}=W\left(t^{\prime}\right)=\int_{0}^{t^{\prime}} d t^{\prime \prime} \Delta \omega_{D} ; \quad \Delta \omega_{D}=\omega_{D}-\omega_{D}^{0}
\end{gathered}
$$

integrate over time, expand in 'bounce/transit' harmonics and change to (E, \wedge) phase space coordinates:

$$
\Lambda=\frac{\mu B_{0}}{E} ;
$$

$$
a_{m, k, \sigma}=\frac{1}{\tau_{t}} \int_{-\tau_{t} / 2}^{\tau_{t} / 2} d \hat{t}^{\prime} e^{i\left[S_{m}^{0} \theta^{\prime}-\left(H \sigma S_{m}^{0}+k\right) \omega_{t} \hat{t}^{\prime}\right]}
$$

$$
a_{k, m, \sigma}^{G}=\frac{1}{\tau_{b, t}} \int_{-\tau_{b, t} / 2}^{\tau_{b, t} / 2} d \hat{t}^{\prime} e^{i\left[S_{m}^{0} \theta^{\prime}-\left(H \sigma S_{m}^{0}+k\right) \omega_{t^{\prime}} \hat{t}^{\prime}+W^{\prime}\right]} \frac{\mathbf{v}_{\mathbf{d}}\left(\mathbf{r}^{\prime}, \theta^{\prime}\right) \cdot \nabla}{i \omega}
$$

$$
\begin{aligned}
& \tilde{n}_{a}=\left(\int J_{0} h d^{3} \mathbf{v}\right)^{c i r c}=-\frac{\pi}{2} e_{a} v_{t h}^{3} \sum_{m} \int_{0}^{b_{\text {min }}\left(r^{0}\right)} \frac{d \Lambda}{b(r, \theta) \sqrt{1-\frac{\Lambda}{b(r, \theta)}}} \int_{0}^{\infty} d Y \sqrt{Y} \cdot \sum_{k} \sum_{\sigma} \frac{\partial F_{0}}{\partial E} \\
& \frac{\left(\omega-\hat{\omega}_{*}\right) e^{-i\left[\left[S_{m}^{0} \theta-\left(H \sigma S_{m}^{0}+k\right) \omega_{t} t\right]\right.}}{\omega-\omega_{D}^{0}-\left(H \sigma S_{m}^{0}+k\right) \omega_{t}} \cdot J_{0}^{2}\left[a_{k, m, \sigma} \phi_{m}\left(r^{0}\right)-\left(a_{k, m, \sigma}-a_{k, m, \sigma}^{G}\right) \psi_{m}\left(r^{0}\right)\right]
\end{aligned}
$$

we had:

$$
\begin{array}{r}
\tilde{n}_{a}=\left(\int J_{0} h d^{3} \mathbf{v}\right)^{c i r c}=-\frac{\pi}{2} e_{a} v_{t h}^{3} \sum_{m} \int_{0}^{b_{m i n}\left(r^{0}\right)} \frac{d \Lambda}{b(r, \theta) \sqrt{1-\frac{\Lambda}{b(r, \theta)}}} \int_{0}^{\infty} d Y \sqrt{Y} \cdot \sum_{k} \sum_{\sigma} \frac{\partial F_{0}}{\partial E} \\
\frac{\left(\omega-\hat{\omega}_{*}\right) e^{-i\left[S_{m}^{0} \theta-\left(H \sigma S_{m}^{0}+k\right) \omega_{t} \hat{t}\right]}}{\omega-\omega_{D}^{0}-\left(H \sigma S_{m}^{0}+k\right) \omega_{t}} \cdot J_{0}^{2}\left[a_{k, m, \sigma} \phi_{m}\left(r^{0}\right)-\left(a_{k, m, \sigma}-a_{k, m, \sigma}^{G}\right) \psi_{m}\left(r^{0}\right)\right]
\end{array}
$$

write down equations for one toroidal harmonic and three poloidal harmonics; integrate over velocity space; circulating particles only, $v=v_{\text {parallel }}$, Maxwellian F_{0} :

$$
\begin{aligned}
& \sum_{m^{\prime}=m-1}^{m+1} \delta_{m^{\prime}, p} D^{m}\left(x_{m^{\prime}}\right)\left(\phi_{m^{\prime}}-\psi_{m^{\prime}}\right)=
\end{aligned} \begin{aligned}
& \text { contalns electrostatic } \\
& \text { waves(sound, drift): } \\
& \text { symmetric in } \Phi \text { and } \Psi
\end{aligned}
$$

with

$$
\begin{aligned}
& \tilde{D}^{m}(x)=\left(1-\frac{\omega_{*}^{m}}{\omega}\right) x Z(x)-\frac{\omega_{*}^{m}}{\omega} \eta\left(x^{2}+x Z(x)\left(x^{2}-\frac{1}{2}\right)\right) \\
& 2 \tilde{N}^{m}(x)=\left(1-\frac{\omega_{*}^{m}}{\omega}\right)\left[x^{2}+x Z(x)\left(x^{2}+\frac{1}{2}\right)\right]-\frac{\omega_{*}^{m}}{\omega} \eta\left[x^{2}\left(x^{2}+\frac{1}{2}\right)+x Z(x)\left(\frac{1}{4}+x^{4}\right)\right] \\
& P=\bar{\tau}\left(\Gamma_{0}-1\right)\left[1-\frac{-\omega_{i}^{*}}{\omega}\left(1+\eta_{i} \frac{\Gamma_{0} G_{0}}{\Gamma_{0}-1}\right)\right] . \\
& \omega_{d}^{ \pm} \approx \frac{v_{t h, i}^{2}}{\Omega_{i}} \frac{1}{R_{0}}\left(\frac{m}{r} \pm \frac{\partial}{\partial r}\right)=\omega_{d}^{n} \pm \omega_{d}^{r}
\end{aligned}
$$

Assuming a Maxwellian F_{0} with $\partial F_{0} / \partial E=-F_{0} / T$ and using

$$
\int_{0}^{\infty} \frac{d t e^{-t^{2}}}{x_{m}^{2}-t^{2}}=\frac{-\sqrt{\pi} Z\left(x_{m}\right)}{2 x_{m}} ; \quad \int_{0}^{\infty} \frac{d t t^{2} e^{-t^{2}}}{x_{m}^{2}-t^{2}}=\frac{-\sqrt{\pi}}{2}\left(x_{m}+x_{m}^{2} Z\left(x_{m}\right)\right)
$$

where

$$
x_{m}=\frac{\omega}{\left|k_{\|, m}\right| v_{t h}} ; \quad t=\frac{v_{\|}}{v_{t h}} ; \quad v_{t h}=\sqrt{\frac{2 T}{m}}
$$

Hamiltonian description:

the Lagrangian $\quad \hat{\Gamma}(\mathbf{x}, \mathbf{p}, t)=\mathbf{p} \cdot \mathrm{d} \mathbf{x}-\hat{H} \mathrm{~d} t$,
the Hamiltonian $\hat{H}(\mathbf{x}, \mathbf{p}, t)=\frac{|\mathbf{p}-e A|^{2}}{2 m}+e \phi$.
Hamilton's equation of motion:

$$
\begin{aligned}
\frac{d \mathbf{x}}{d t} & =\partial_{\mathbf{p}} \hat{H}=\mathbf{p} / m \\
\frac{d \mathbf{p}}{d t} & =-\partial_{\mathbf{x}} \hat{H}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})+e \frac{d \mathbf{A}}{d t}
\end{aligned}
$$

the physics of a system is conserved under a coordinate transform if there exists a total derivative $\mathrm{dS}: \underline{\Gamma}^{\prime}\left(\mathbf{Z}^{\prime}, t\right)=\underline{\Gamma}(\mathbf{Z}, t)+\mathrm{d} S$

$$
\begin{aligned}
(\mathbf{x}, \mathbf{p}) \rightarrow & \left(\mathbf{X}, \mu, v_{\|}, \gamma\right) \\
\hat{\Gamma} \rightarrow & \underline{\Gamma}_{\mathrm{gc}}=\mathbf{A}_{(0)}^{*} \cdot \mathrm{~d} \mathbf{X}+\mu \mathrm{d} \gamma-H_{\mathrm{gc}} \mathrm{~d} t \\
& \text { with } H_{\mathrm{gc}}=\frac{1}{2} m v_{\|}^{2}+\mu B_{(0)}(\mathbf{X})+e \phi_{(0)}(\mathbf{X})
\end{aligned}
$$

Hamiltonian description: action angles

due to guiding centre transformation, canonicity of coordinates ($\mathrm{X}, \mathrm{E}, \mu, \gamma$) is lost
it is possible to find action angles, i.e. canonical variables for periodic systems:

$$
\dot{\mathbf{J}}=-\frac{\partial H_{(0)}}{\partial \boldsymbol{\alpha}}=0, \quad \dot{\boldsymbol{\alpha}}=\frac{\partial H_{(0)}}{\partial \mathbf{J}}
$$

motion is separated into 3 periodic motions:

$$
\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\boldsymbol{\Omega} t=\boldsymbol{\alpha}_{0} \quad+\boldsymbol{\Omega} \int_{0}^{\theta} \frac{d \theta}{\dot{\theta}}
$$

$$
\Omega_{1}=\Omega_{b} \oint \frac{d \theta}{2 \pi} \frac{1}{\dot{\theta}} \dot{\gamma} \quad \approx \Omega_{b} \oint \frac{d \theta}{2 \pi} \frac{1}{\dot{\theta}} \frac{e B_{(0)}}{m} \quad \text { gyromotion }
$$

$$
\Omega_{2} \equiv \Omega_{b}=2 \pi\left(\oint \frac{1}{\bar{\theta}}\right)^{-1} \approx 2 \pi\left(\oint \frac{1}{\mathbf{b}_{(0)} \cdot \nabla \theta v_{\|}}\right)^{-1} \text { poloidal bounce frequency }
$$

$$
\Omega_{3}=\Omega_{b} \oint \frac{d \theta}{2 \pi} \frac{1}{\dot{\theta}} \dot{\varphi} \quad \approx \Omega_{b} \oint \frac{d \theta}{2 \pi} \frac{1}{\dot{\theta}} \mathbf{v}_{D} \cdot\left[-q^{\prime}(\bar{\Psi}) \theta \nabla \Psi+\nabla(\varphi-q(\bar{\Psi}) \theta)\right]
$$

$+\delta_{\text {passing }} q(\bar{\Psi}) \Omega_{b} \quad$ toroidal precession frequency

explicit motion of particles

$$
\begin{array}{rlr}
\dot{\Psi} & =\mathbf{v}_{g} \cdot \nabla \Psi & \mathbf{v}_{g}=\mathbf{v}_{\mathbf{E} \times \mathbf{B}}+\mathbf{v}_{\nabla B}+\mathbf{v}_{c} \\
\dot{\theta} & =v_{\|} \mathbf{b} \cdot \nabla \theta+\mathbf{v}_{g} \cdot \nabla \theta & \\
\dot{\varphi} & =v_{\|} q \mathbf{b} \cdot \nabla \theta+\mathbf{v}_{g} \cdot \nabla \varphi &
\end{array}
$$

lowest order:

$$
\begin{aligned}
& \Omega_{2}^{-1}=\oint \frac{d \theta}{2 \pi} \frac{1}{\mathbf{b} \cdot \nabla \theta v_{\|}} \text {with } \mathbf{b} \cdot \nabla \theta \approx 1 / q R . \quad \Omega_{2}=\Omega_{b}= \pm \frac{1}{q R_{0}} \sqrt{\frac{2 \mathrm{E}}{m}} \bar{\Omega}_{b} . \\
& \bar{\Omega}_{b}=\left(\oint \frac{d \theta}{2 \pi} \frac{1}{\sqrt{1-\lambda(1+\epsilon \cos \theta)}}\right)^{-1} \quad \text { with } \quad \lambda=\mu B_{0} / \mathrm{E} \\
& \bar{\Omega}_{b}^{-1}=\sqrt{\frac{2 \epsilon+(1-\epsilon) \kappa^{2}}{2 \epsilon}} \oint \frac{d \theta}{2 \pi} \frac{1}{\sqrt{1-\kappa^{2} \sin ^{2}(\theta / 2)}} \quad \text { with } \kappa^{2}=2 \epsilon \lambda /[1-(1-\epsilon) \lambda]
\end{aligned}
$$

leads to elliptic integrals for bounce/passing and precessional particle motion [circular, large aspect ratio: Coppi, Rewoldt, 1980]

QN:

$$
\sum_{j} e\left[\int J_{0} h d^{3} \mathbf{v}+\frac{e n_{0}}{T} e^{-\chi} I_{0}(\chi)\left[\psi-\phi-\left(1+\eta G_{0}(\chi)\right) \frac{\omega_{*}}{\omega} \psi\right]\right]=0
$$

with

$$
\begin{aligned}
& \omega_{*} \equiv\left[\frac{c T \mathbf{b}}{i e B} \times \frac{\nabla n}{n} \cdot \nabla\right] ; \quad \eta \equiv \frac{\nabla T}{T} / \frac{\nabla n}{n} \\
& \chi \equiv \frac{v_{t h}^{2} k_{\perp}^{2}}{2 \Omega^{2}} ; \quad G_{0}(\chi)=-\chi+\chi I_{1}(\chi) / I_{0}(\chi)
\end{aligned}
$$

GKM:

$$
\begin{aligned}
& -\frac{\omega^{2}}{\omega_{A 0}^{2}} \nabla_{\perp} \frac{\hat{n} B_{0}^{2}}{\mathbf{B}^{2}} \nabla_{\perp} \psi+ \\
& +\begin{array}{|r|}
\mu_{0} P_{0} \frac{\mathbf{b}}{B} \times\left[(\mathbf{b} \cdot \nabla) \mathbf{b}+\frac{\nabla B}{B}\right] \cdot \nabla\left[\frac{\nabla \hat{P}}{B}(\mathbf{b} \times \nabla) \psi\right]=0
\end{array} \\
& \mu_{0} \nabla P_{1} \cdot \nabla \times \frac{\mathbf{B}}{B^{2}} \quad \text { with } \mathbf{P}_{\mathbf{I}}=\frac{\nabla P}{i \omega B}(\mathbf{b} \times \nabla) \psi
\end{aligned}
$$

Coulomb collisions:

Integration of cross section diverges for small scattering angles: Coulomb potential has long interaction range!
physical argument: cut off integration at Debye length since outside the Debye sphere the ES potential is shielded (or integrate Debye-Hückel potential)

$$
b_{90}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{1}{\mu_{r} u^{2}} \approx \frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{1}{3 T}=\frac{Z_{1} Z_{2}}{12 \pi \lambda_{D}^{2} n}
$$

minimal scattering angle for Debye length and ratio of small to large angle scattering are:

$$
\begin{gathered}
\frac{\chi_{\min }}{2}=\arctan \left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{1}{\lambda_{D} \mu_{r} u^{2}}\right) \approx \arctan \frac{Z_{1} Z_{2}}{12 \pi \lambda_{D}^{3} n} \\
\Lambda^{2}=\frac{\lambda_{D}^{2}-b_{90}^{2}}{b_{90}^{2}}=\frac{\lambda_{D}^{2}}{b_{90}^{2}}-1 \approx \frac{\lambda_{D}^{2}}{b_{90}^{2}}=\left(\frac{12 \pi}{Z_{1} Z_{2}}\right)^{2} \lambda_{D}^{6} n^{2}=\left(\cot \frac{\chi_{\min }}{2}\right)^{2} \quad \ln \Lambda \approx \mathbf{~} 8 \\
\text { Advanced Courses EP, 2020 }
\end{gathered}
$$

θ : angle out of plane

$$
\begin{aligned}
\delta u_{\perp} & =\delta u \cos \frac{\chi}{2} \cos \theta=2 u \sin \frac{\chi}{2} \cos \frac{\chi}{2} \cos \theta \\
\delta u_{\|} & =-\delta u \sin \frac{\chi}{2}=-2 u \sin ^{2} \frac{\chi}{2}
\end{aligned}
$$

$$
\left\langle\frac{\partial u_{\|}}{\partial t}\right\rangle_{\Omega}=-n\left(\mathbf{v}_{2}\right) u \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{\chi_{\min }}^{\pi} \sin \chi \mathrm{d} \chi 2 u \sin ^{2} \frac{\chi}{2} \sigma(u, \chi) .
$$

perpendicular contribution vanishes due to $\cos \theta$ dependence

$$
\left\langle\frac{\partial \mathbf{u}}{\partial t}\right\rangle_{\Omega}=\left\langle\frac{\partial u_{\|}}{\partial t}\right\rangle_{\Omega} \frac{\mathbf{u}}{u}=-n\left(\mathbf{v}_{2}\right)\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{4 \pi \ln \Lambda}{\mu_{r}^{2} u^{2}} \frac{\mathbf{u}}{u} .
$$

rate of change in energy:

$$
\begin{aligned}
\mathbf{V} & =\frac{m_{1} \mathbf{v}_{1}+m_{2} \mathbf{v}_{2}}{m_{1}+m_{2}} \\
\mathbf{u} & =\mathbf{v}_{1}-\mathbf{v}_{2} \\
\mu_{r} & =\frac{m_{1} m_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

$$
\begin{gathered}
\delta E_{1}=\frac{m_{1}}{2}\left(v_{1}^{2}-v_{1}^{\prime 2}\right)=\frac{m_{1}}{2}\left(\left(\frac{\mu_{r}}{m_{1}} \mathbf{u}+\mathbf{V}\right)^{2}-\left(\frac{\mu_{r}}{m_{1}} \mathbf{u}^{\prime}+\mathbf{V}\right)^{2}\right)=\mu_{r} \mathbf{V} \delta \mathbf{u} \\
\left\langle\frac{\partial E_{1}}{\partial t}\right\rangle_{\Omega}=\mathbf{V} \cdot\left\langle\frac{\partial \mathbf{p}_{1}}{\partial t}\right\rangle_{\Omega}=-n\left(\mathbf{v}_{2}\right)\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{4 \pi \ln \Lambda}{\mu_{r}} \frac{\mathbf{u} \cdot \mathbf{V}}{u^{3}} \\
\left\langle\frac{\partial u_{\perp}^{2}}{\partial t}\right\rangle_{\Omega}=n\left(\mathbf{v}_{2}\right) u \int_{\chi_{\min }}^{\pi} \sin \chi \mathrm{d} \chi \int_{0}^{2 \pi} \mathrm{~d} \theta 4 u^{2} \sin ^{2} \frac{\chi}{2} \cos ^{2} \frac{\chi}{2} \cos ^{2} \theta \sigma(u, \chi) \\
\left\langle\frac{\partial u_{\perp}^{2}}{\partial t}\right\rangle_{\Omega} \approx n\left(\mathbf{v}_{2}\right)\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{4 \pi \ln \Lambda}{\mu_{r}^{2} u} \\
\left\langle\frac{\partial u_{\|}^{2}}{\partial t}\right\rangle_{\Omega}=n\left(\mathbf{v}_{2}\right)\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{4 \pi}{\mu_{r}^{2} u} \cos ^{2} \frac{\chi_{\min }}{2} \approx 0
\end{gathered}
$$

so far: background particles had one, fixed velocity now: include Maxwellian background

$$
\left\langle\frac{\partial \mathbf{p}_{1}}{\partial t}\right\rangle=\int \mathrm{d}^{3} v_{2} f\left(\mathbf{v}_{2}\right)\left\langle\frac{\partial \mathbf{p}_{1}}{\partial t}\right\rangle_{\Omega}
$$

leads to the following expression:

$$
\begin{aligned}
& \int \mathrm{d}^{3} v_{2} \frac{\mathbf{u}}{u^{3}} f\left(\mathbf{v}_{2}\right)=-\int \mathrm{d}^{3} v_{2} f\left(\mathbf{v}_{2}\right) \nabla_{v_{1}} \frac{1}{u}=-\nabla_{v_{1}} h\left(\mathbf{v}_{1}\right) \\
& h\left(\mathbf{v}_{1}\right)=\int \mathrm{d}^{3} v_{2} f\left(\mathbf{v}_{2}\right) \frac{1}{u} . g\left(\mathbf{v}_{1}\right)=\frac{1}{2} \int \mathrm{~d}^{3} v_{2} f\left(\mathbf{v}_{2}\right) u
\end{aligned}
$$

are called Rosenbluth potentials

$$
\begin{gathered}
\left\langle\frac{\partial \mathbf{p}_{1}}{\partial t}\right\rangle=\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{4 \pi \ln \Lambda}{\mu_{r}} \nabla_{v_{1}} h\left(\mathbf{v}_{1}\right) \\
\left\langle\frac{\partial E_{1}}{\partial t}\right\rangle=\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{4 \pi \ln \Lambda}{\mu_{r}}\left\{\mathbf{v}_{1} \cdot \nabla_{v_{1}} h\left(\mathbf{v}_{1}\right)+\frac{\mu_{r}}{m_{1}} h\left(\mathbf{v}_{1}\right)\right\}
\end{gathered}
$$

$$
\begin{array}{ll}
h\left(\mathbf{v}_{1}\right)=\int \mathrm{d}^{3} v_{2} \frac{n_{2} \beta_{2}^{3}}{\pi^{3 / 2}} e^{-\beta_{2}^{2} v_{2}^{2}} \frac{1}{\left|\mathbf{v}_{1}-\mathbf{v}_{2}\right|}=\frac{n_{2}}{v_{1}} \operatorname{erf}\left(\beta_{2} v_{1}\right) . & \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{~d} \xi e^{-\xi^{2}} \\
\nabla_{v_{1}} h\left(\mathbf{v}_{1}\right)=-\frac{n_{2}}{v_{1}^{2}}\left\{\operatorname{erf}\left(\beta_{2} v_{1}\right)-\frac{2 \beta_{2} v_{1}}{\sqrt{\pi}} e^{-\beta_{2}^{2} v_{1}^{2}}\right\} \frac{\mathbf{v}_{1}}{v_{1}} & \beta=\sqrt{\frac{m}{2 T}}=1 / \mathbf{v t h}
\end{array}
$$

$$
\left\langle\frac{\partial E_{1}}{\partial t}\right\rangle=-\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{4 \pi \ln \Lambda_{2}}{\mu_{r}} \frac{n_{2}}{v_{1}}\left\{\operatorname{erf}\left(\beta_{2} v_{1}\right)-\frac{2 \beta_{2} v_{1}}{\sqrt{\pi}} e^{-\beta_{2}^{2} v_{1}^{2}}-\frac{\mu_{r}}{m_{1}} \operatorname{erf}\left(\beta_{2} v_{1}\right)\right\}
$$

or:

$$
\begin{aligned}
\left\langle\frac{\partial E_{1}}{\partial t}\right\rangle= & -\left(\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{4 \pi \ln \Lambda_{2} n_{2}}{m_{2} v_{1}}\left\{\operatorname{erf}\left(\beta_{2} v_{1}\right)-\left(1+\frac{m_{2}}{m_{1}}\right) \frac{2 \beta_{2} v_{1}}{\sqrt{\pi}} e^{-\beta_{2}^{2} v_{1}^{2}}\right\} \\
& \text { energy relaxation for arbitrary species }
\end{aligned}
$$

