WP1: Weak turbulence analysis of energetic particles due to SAW/DAW*

N. Carlevaro, G. Montani, F. Zonca

http://www.afs.enea.it/zonca

ENEA C.R. Frascati, C.P. 65 - 00044 - Frascati, Italy.

Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, P.R.C.

January 19.th, 2017

*Contributions from: Liu Chen [Rev. Mod. Phys. 88, 015008 (2016)], Zhiyong Qiu *In collaboration with: M. Falessi and A. Milovanov

Fulvio Zonca

浙江大學豪愛理論與模擬中心這麼 Institute for Fusion Theory and Simulation, Zhejiang University

Description of NAT WP1

- Nonlinear interaction of energetic particles (EP) with Alfvén fluctuations: Alfvén eigenmodes (AEs), EP modes (EPM) and shear/drift Alfvén waves (SAW/DAW)
 - Approach based on (singular) perturbation expansion is well-known for Langmuir turbulence in uniform plasmas: weak turbulence theory
- □ SAW/DAW fluctuations in fusion plasmas are characterized by both broadband (turbulent) feature as well as nearly-periodic (coherent) behavior.
- □ Need for a general theoretical framework for a self-consistent description
 - Gyrokinetic transport theory, phase space zonal structures (PSZS): long-lived nonlinear equilibria consistent with fluctuation spectrum
 - Need to go beyond the local description of fluctuation-induced fluxes, extending the diffusive transport paradigm and accounting for modes of the linear stable spectrum

Fulvio Zonca

ffts 浙江大学豪安理論與模擬中心 institute for Fusion Theory and Simulation, Zhejiang University

Gyrokinetic transport theory and time scales

Fluctuation induced transport in fusion plasmas is due to low frequency fluctuations $(|\omega| \ll |\Omega|) \Rightarrow$ gyrokinetic transport theory.

3

浙江大学豪安理論與模拟中心

Institute for Fusion Theory and Simulation, Zhejiang University

- Particle dynamics independent of the gyrophase \Rightarrow reduced phase-space description in terms of an invariant of motion: magnetic moment μ . Gyrokinetic transport theory deals with transport in non-uniform, non-autonomous system with 2 degrees of freedom.
- □ Reduced dynamic description of a time dependent non-uniform plasma with one degree of freedom in the corresponding reduced phase space
 - identification of additional (nonlinear) invariant of motion $|\omega| \sim |n\bar{\omega}_{dk}| \ll \omega_b \Rightarrow J = \text{const} \Rightarrow \text{fishbone paradigm} \Rightarrow \text{neglect finite Larmor and magnetic drift orbit width}$
 - Advantage of simplicity and of reducing to the bump-on-tail paradigm in the uniform plasma limit
 - Breaks down on long time scales: collisions? Arnold diffusion?

Milestones and Deliverables 2017/2018

- Address the effect of interaction of SAW/DAW spectrum with ZS and PSZS effect of fluctuation spectrum on wave-particle resonances (2017)
 - Derivation of nonlinear model equations for the self-consistent evolution of SAW/DAW and ZS/PSZS for the "fishbone paradigm"
 - generalization of resonance broadening theory [Dupree 66]: non-Gaussianity of fluctuation spectrum, non-diffusive transport
- \Box Numerical solution of model equations and applications (2018)
 - Uniform plasma: numerical solution of model equations and V&V against Hamiltonian formulation of the bump-on-tail paradigm
 - Non-uniform plasmas: numerical solution of model equations for the "fishbone paradigm" and applications to ITER and DEMO

Fulvio Zonca

Phase space zonal structures (ongoing; NAT 2017)

The fluctuating particle distribution functions are decomposed in adiabatic and nonadiabatic responses as [Frieman and Chen 1982]

$$\delta f = e^{-\boldsymbol{\rho}\cdot\boldsymbol{\nabla}} \left[\delta g - \frac{e}{m} \frac{1}{B_0} \frac{\partial \bar{F}_0}{\partial \mu} \left\langle \delta L_g \right\rangle \right] + \frac{e}{m} \left[\frac{\partial \bar{F}_0}{\partial \mathcal{E}} \delta \phi + \frac{1}{B_0} \frac{\partial \bar{F}_0}{\partial \mu} \delta L \right]$$

$$\delta L_g = \delta \phi_g - \frac{v_{\parallel}}{c} \delta A_{\parallel g} = e^{\boldsymbol{\rho} \cdot \boldsymbol{\nabla}} \delta L = e^{\boldsymbol{\rho} \cdot \boldsymbol{\nabla}} \left(\delta \phi - \frac{v_{\parallel}}{c} \delta A_{\parallel} \right)$$

Using mode structure decomposition in toroidal geometry [Zonca et al. NJP15], the representation of phase-space zonal structures is $(n = \ell = 0)$

$$\delta f_{z} = \sum_{m} \left\{ \mathcal{P}_{m,0,0} \circ \left[J_{0}(\lambda) \delta g \right]_{m,0} \right\} - \left[J_{0}(\lambda) \left(\frac{e}{m} \frac{1}{B_{0}} \frac{\partial \bar{F}_{0}}{\partial \mu} \left\langle \delta L_{g} \right\rangle \right) \right]_{0,0} + \frac{e}{m} \left[\frac{\partial \bar{F}_{0}}{\partial \mathcal{E}} \delta \phi + \frac{1}{B_{0}} \frac{\partial \bar{F}_{0}}{\partial \mu} \delta L \right]_{0,0} .$$

Fulvio Zonca

Using the nonlinear gyrokinetic equation [Frieman and Chen 1982]; and assuming that $|k_{\parallel}| \ll |\mathbf{k}_{\perp}|$ [Zonca et al NJP15, Chen RMP16]

$$\frac{\partial g_z}{\partial t} = -\mathcal{P}_{0,0,0} \circ \left(\frac{e}{m} \frac{\partial}{\partial t} \left\langle \delta L_g \right\rangle_z \frac{\partial \bar{F}_0}{\partial \mathcal{E}} \right)_{0,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m \mathcal{P}_{m,0,0} \circ \frac{c}{d\psi/dr} \frac{\partial}{\partial r} \sum_n n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m n \sum_m n \left(\delta g_n \left\langle \delta L_g \right\rangle_{-n} \right)_{m,0} + i \sum_m n \sum_m n$$

6

浙江大學豪安理論與模擬中心這個

Institute for Fusion Theory and Simulation, Zhejiang University

ifts)

where $d\psi/dr$ is the derivative of the equilibrium magnetic flux.

- □ This equation contains both zonal flows and fields (the first term on the RHS) as well as the nonlinear effect of EP on equilibrium via wave-EP interactions, dominated by wave-particle resonances.
- \Box In turn, the feedback of phase space zonal structures onto $\delta g_n \ (n \neq 0)$ is

$$\left(\frac{\partial}{\partial t} - \frac{inc}{d\psi/dr} \left\langle \delta L_g \right\rangle_z \frac{\partial}{\partial r} + v_{\parallel} \nabla_{\parallel} + \boldsymbol{v}_d \cdot \boldsymbol{\nabla}_{\perp} \right) \delta g_n = i \frac{e}{m} \left(Q \bar{F}_0 - \frac{n B_0}{\Omega d\psi/dr} \mathcal{P}_{0,0,0} \circ \frac{\partial \delta g_z}{\partial r} \right) \left\langle \delta L_g \right\rangle_n$$

 \square Accounts for zonal flows/fields as well as corrugation of radial profiles.

Fulvio Zonca

- These equations for δg_z and δg_n are closed by the $(\delta \phi_n, \delta A_{\parallel n})$ DAW field equations for the dynamic evolution of Alfvénic fluctuations and by the equations for the zonal flows/fields and $(\delta \phi_z, \delta A_{\parallel z})$.
- \Box Studied so far in simplified limits:
 - Neglecting wave-particle resonances \Rightarrow dominant zonal flows/fields [Chen POP00; Chen NF01; Guo PRL09; Kosuga POP12]
 - Neglecting effect of zonal flows/fields ⇒ dominant EP wave-particle resonances [Zonca Th.Fus.Pl.00; NF05; PPCF06]

ifts)

浙江大學豪愛理論與模擬中心這麼

Institute for Fusion Theory and Simulation, Zhejiang University

Connection with other projects

- NLED Project (WP15_ENEA-03, Theory and simulation of energetic particle dynamics and ensuing collective behaviors in fusion plasmas):
 - NC, GM and FZ (PI), involved in NLED
 - Predominant focus on bump-on-tail paradigm and its applicability to reduced models for EP transport by SAW/DAW in fusion plasmas
- Complete weak-turbulence description of EP transport on long time scales [M. Falessi PhD Thesis 2016]: connection with the WP17_ENEA-10 Project (MF, FZ, AM(PI) participation)
 - Hierarchy of spatiotemporal scales: role of collisions/dissipation, sources/sinks on long time scales; must be included into the bounce averaged evolution of PSZS
 - effect of spectral transfers must be addressed for high mode number and long time scales [Chen RMP16]; connected with resonance broadening [Dupree 66]

Fulvio Zonca

Minor manpower change suggested

- □ Original proposal
 - 2017 N. Carlevaro (0.0); G. Montani (0.4ppy); F. Zonca (0.35ppy). Total: 0.75ppy
 - 2018 N. Carlevaro (1.0 ppy); G. Montani (0.5 ppy); F. Zonca (0.5 ppy). Total: 2.0ppy
- □ Suggested amendment (at fixed cost): to get NC structurally involved in NAT activities from the start
 - 2017 N. Carlevaro (0.25ppy); G. Montani (0.4ppy); F. Zonca (0.2ppy). Total: 0.85ppy
 - 2018 N. Carlevaro (1.0 ppy); G. Montani (0.5 ppy); F. Zonca (0.5 ppy). Total: 2.0ppy

Fulvio Zonca

浙江大學豪愛理論與模擬中心。 Institute for Fusion Theory and Simulation, Zhejiang University