

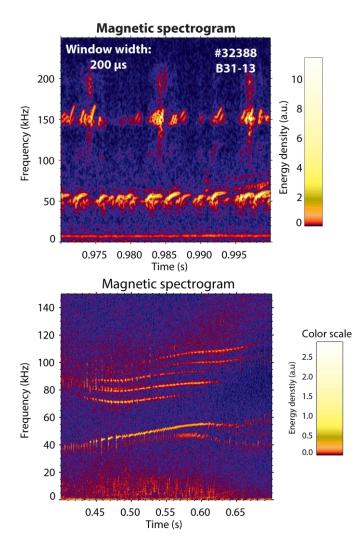
is work has been carried out within the framework of the ROfusion Consortium and has received funding from the ratom research and training programme 2014-2018 under gran reement No 633053. The views and opinions expressed herein not necessarily reflect those of the European Commission.

Investigation of the nonlinear interaction of fast ion driven plasma waves

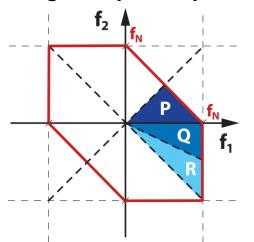
Peter Zs. Poloskei¹, G. Papp², G. I. Pokol¹

*e-mail: *poloskei.peter@reak.bme.hu* Collaborators: Ph. W. Lauber², X. Wang², L. Horváth³

¹Institute of Nuclear Techniques, Budapest University of Technology and Economics, Hungary ²Max-Planck-Institute for Plasma Physics, D-85748 Garching, Germany ³York Plasma Institute, Department of Physics, University of York, York, YO10 5DD, UK

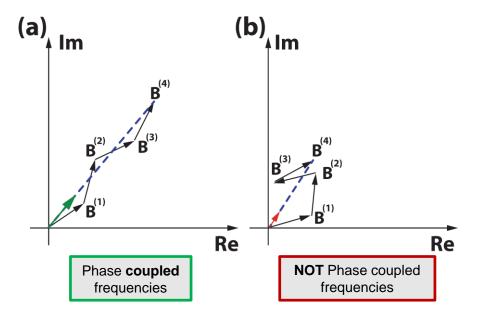

2nd NAT ENR meeting 2017.05.17.

Introduction


- Super-thermal energetic particles (EP) can excite instabilities which can lead to an enhanced transport of fast particles
- Nonlinear system: kinetic and MHD nonlinearities are both important [Heidbrink PoP 2008]
- Amplitude correlation can be caused by both fast ion phase space coupling and direct wave-wave coupling
- Our aim: investigate the signs of nonlinear coupling of different fast ion induced modes (TAEs & EGAMs)
- Support numerical simulations, and compare them to experimental results

Investigation of three wave coupling

- Coupling condition:
- Detection of coupling through phase locking
- Bispectrum calculation as averaging on the complex plane
- Real signals yield symmetries



$$f_1 + f_2 - f_3 = 0$$

$$\varphi_1 + \varphi_2 - \varphi_3 = \text{const}$$

EURO*fusion*

 $B(f_1, f_2) = \mathbb{E} \left[X(f_1) X(f_2) X^*(f_1 + f_2) \right]$

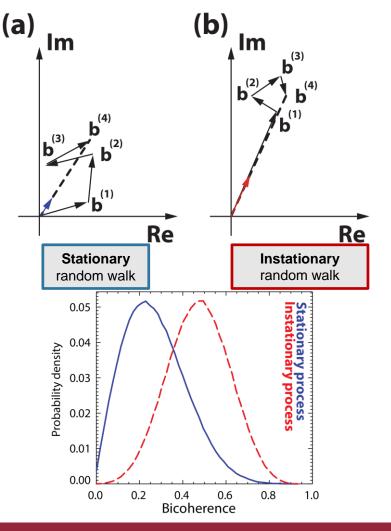
Investigation of three wave coupling

- Coupling condition:
- Detection of coupling through phase locking
- Bispectrum calculation as averaging on the complex plane
- Normalised bispectrum will give bicoherence
- Bicoherence is
 bounded [0,1]
 like (linear) coherence

$$f_1 + f_2 - f_3 = 0$$
$$\varphi_1 + \varphi_2 - \varphi_3 = \text{const}$$

 $B(f_1, f_2) = \mathbb{E} \left[X(f_1) X(f_2) X^*(f_1 + f_2) \right]$

$$b(f_1, f_2) = \frac{|B(f_1, f_2)|}{\mathbb{E}\left[|X(f_1)X(f_2)|^2\right]^{1/2} \mathbb{E}\left[|X(f_1 + f_2)|^2\right]^{1/2}}$$

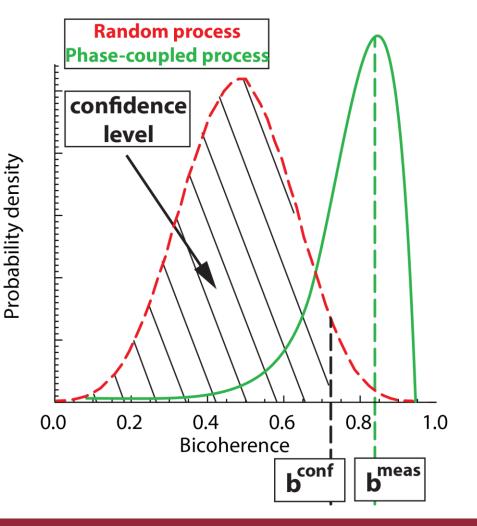


Problem of non-stationarity

 Main question: What happens if the method abovementioned is applied to non-stationary processes?

IPP

- Random-walk with the same number of averages (with difference in amplitude distribution)
- Deviations in the probability density functions
- False high bicoherence: without phase-coupling



Confidence estimation of bicoherence

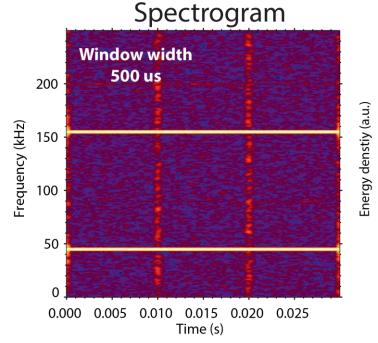
- Phase-randomized bicoherence density function generated with given (instationary) amplitude distribution
- Level of confidence can be used as a filtering parameter

$$\alpha = \int_{0}^{b^{m}} \rho(b) db$$

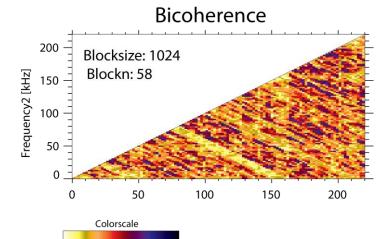
Testing method on numerical systems

12

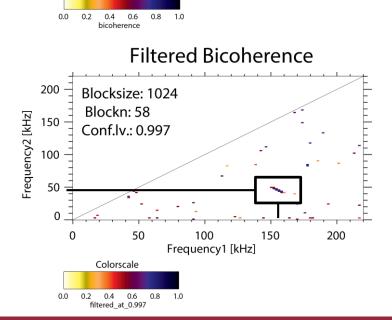
10


8

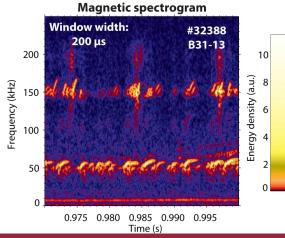
6

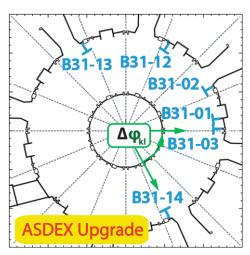

4

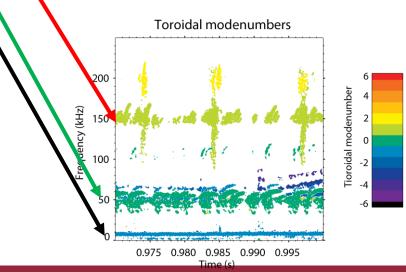
2


0

- Phase-coupled modes
 (45,155) kHz with
 broadband perturbations
- False high bicoherences in not phase coupled (f₁,f₂) points
- Filtering can help




EURO*fusion*



- AUG experiments
- Ballooning probes (mag. diag.) (2 MHz sampling freq.)
- NTI Wavelet Tools
- 3 main frequency regimes:
 - @150 kHz TAEs (m=-3,n=1)
 - @50 kHz chirping EGAMs (-2,0)
 - @10 kHz low frequency (3,-1) (ion-diagmagnetic direction)

EURO*fusion*

P. Zs. Poloskei | Investigation of fast ion driven plasma waves | 2nd NAT ENR meeting | 2017.05.17.

AUG experiments

200

150

100

50

0

0.0 0.2

requency2 [kHz]

- #32388 strong EGAMs and bursting TAEs
- Significant phase-coupling between EGAMs and TAEs
- Phase-coupling between low frequency mode and EGAM

Bicoherence

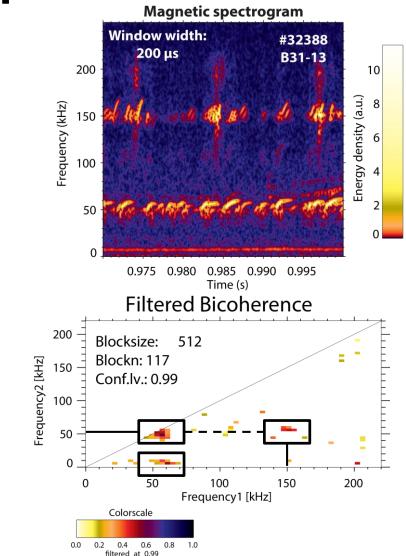
100

1.0

Frequency1 [kHz]

512

Blocksize:


Blockn: 117

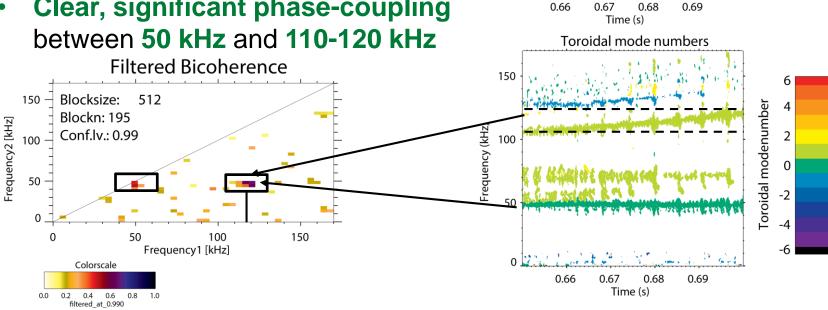
50

Colorscale

bicoherence

0.4 0.6 0.8

P. Zs. Poloskei | Investigation of fast ion driven plasma waves | 2nd NAT ENR meeting | 2017.05.17.


150

200

EURO*fusion*

- **AUG experiments**
- #34184
- EGAMs @50kHz
- n=±1 both co- and counter • propagating TAEs present at the same time @100-130kHz
- **Clear, significant phase-coupling** between 50 kHz and 110-120 kHz

EURO*fusion*

100

80

60

40

20

Energy density (a.u.)

Magnetic spectrogram

#34184

B31-14

Windows width:

300 µs

150

100

50

Frequency (kHz)

- AUG experiments
- #34185

Blocksize: 512

390

0.99

50

0.8 1.0

Blockn:

Conf.lv.:

Colorscale

0.4 0.6

filtered at 0.990

150

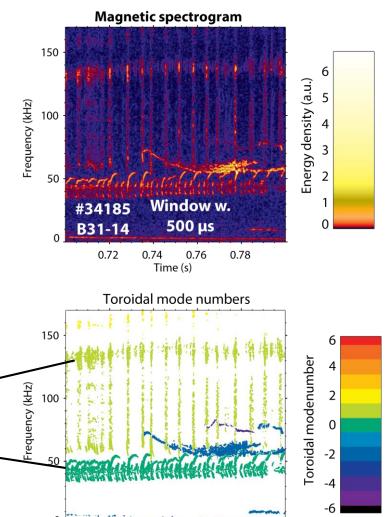
100

50

0 -

0.0 0.2

Frequency2 [kHz]


- Chriping EGAMs @50 kHz
- Bursting TAEs @130 kHz

filtered_at_0.990 at AUGD

 Week phase-coupling detected, can it be caused by EP-phase space coupling?

100

Frequency1 [kHz]

0.74

Time (s)

0.72

0.76

0.78

150

Summary

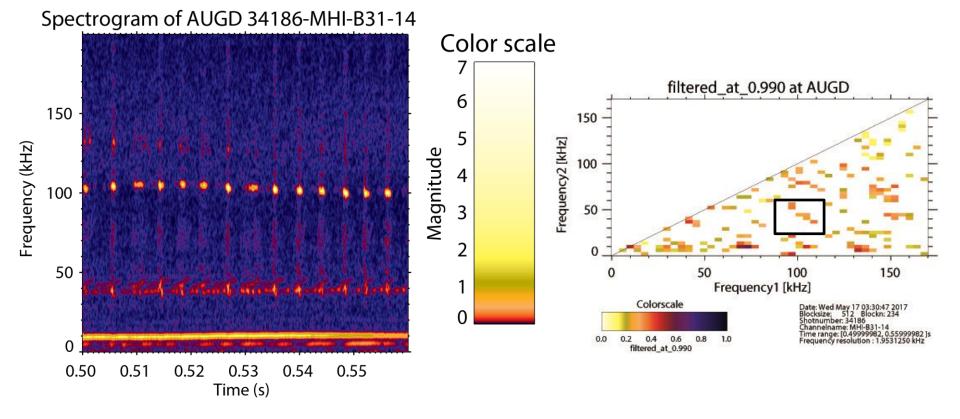
- EUROfusion ENR-2017 framework:
 - Experimental data analysis to support theoretical calculations
 - Characterization of linear behavior (tools ready, writing up)
 - Investigate the signs of nonlinear interaction of EP driven plasma waves
- Method of bicoherence has been generalized to non-stationary processes
 - Tested on model systems
 - Method **applied to experimental results**, (8 dedicated discharges) where **significant wave-wave coupling** was found between **EGAMs** and **TAEs** (further analysis in progress).
 - Analysis of HMGC provided cases in progress
- Outlook/future plans:
 - Coupling coefficient estimation
 - Application of energy- or/and coherence filtering
 - STFT (wavelet) bicoherence

Back-up

P. Zs. Poloskei | Investigation of fast ion driven plasma waves | 2nd NAT ENR meeting | 2017.05.17.

More experiments

- **#33873**
- **TAEs** with **identical toroidal modenumber** (n=-2@80 kHz, n=-3@100 kHz) (m=~5-6) (propagating ion-diamagnetic direction)


More experiments

- #34186
- Amplitude correlation between EGAMs and TAEs

IPP

1782

And wave-wave coupling? >no high bicoherence with filtering

