

s work has been carried out within the framework of the AOfusion Consortium and has received funding from the atom research and training programme 2014-2018 under grant eement No 633053. The views and opinions expressed herein not necessarily reflect those of the European Commission.

Linear and non-linear characterization of transient waves and their interactions

Kick-off meeting for EnR project on Nonlinear interaction of Alfvénic and turbulent fluctuations in burning plasmas

Gergo Pokol^{1*}, Gergely Papp², Peter Zs. Poloskei¹

collaborators: Ph. Lauber³, L. Horvath³, G. Por¹, ASDEX Upgrade team

*e-mail: pokol@reak.bme.hu

¹Institute of Nuclear Techniques, BME, Budapest, Hungary ²Max Planck Institute for Plasma Physics, Garching, Germany ³CCFE, Culham, UK

19 January 2017

WP6 Deliverables

- Develop a standard set of tools for the linear characterisation of chirping modes, comparison to simulations; linear characterization of chirping modes demonstrated on EGAMs, BAEs and bursting TAEs at the ASDEX Upgrade tokamak (2017)
- Characterise the non-linear interactions by higher order spectra and band-power correlation with careful consideration of error propagation and significance levels, comparison to simulations; quantitative study of non-linear interactions of various fast particle-related transient modes (e.g. EGAMs, BAEs and/or bursting TAEs) with special emphasis on detecting wave-wave coupling (2018)

Justification

- Data processing aimed at focus issues identified by theory research
- Custom developed data analysis methods aimed at characterizing fast transient phenomena in noisy environment
- Quantitative analysis with thorough evaluation of significance levels

History

- 2002 Toolbox development for time-frequency analysis of plasma transients starts
- 2005 First applications at ASDEX Upgrade (mode structure)
- 2011 NTI Wavelet Tools GUI deployed to ASDEX Upgrade
- 2012 Move to quantitative analysis with error bars
- 2013 Start theory-motivated data analysis

NTI Wavelet Tools

NTI Wavelet Tools	
File Filter Help	
Input Data Channel pairs selected! Load data Save data ? Data History: Loaded_with_MTR Version: 1.7.2 - r1199 Coordinates History: Loaded_with_MTR	Tools! Experiment: AUGD Shotnumber: 23418 Timerange: 3.3200000 s - Sample Frequency: 2000.0000 kHz Number of channels: 4 Number of data points: 20001
Processing	Visualization
Load Processed Data Select channel pairs Num. of Sel. Ch. Pairs: 6 Version info Transforms CWT Family: Moriet Order: 6 Discale: 0.10000 ? STET Gauss Length: 100 Eres: 500 Step: 1 2	General Settings Froce Linear Freq. Axis Frequency Range: min: 0.0000000 kHz max. 0.0000000 kHz ? Poster
Frequency Range: min: 0.0000000 kHz max: 1000.0000 kHz ? Number of data points after downsampling: 20001	Transforms Smoothed I Energy Cscale opt. 0.2000 Phase ?
Cross-transforms Cross-phase correction ?	Cross-transforms Smoothed Fenergy Cscale opt.: 0.2000 Phase ?
Coherences Average 0 ? Transfer functions ?	Coherences All Average Minimum ?
✓ Mode numbers Toroidal ▼ Filter: Rel. pos. ▼ Optimized fitting	Transfer functions Coh. Limit: 0.0000 % Power Limit: 0.0000 % Cscale opt.: 0.2000 ? Mode numbers Coh. Limit: 0.0000 % Power Limit: 0.0000 % Q Limit: 20 % ?
Filter parameters: Mode number Steps: 1 Mode number range: -6 ? Predicted Memory Usage 2.16 GB Start Calculation Save Processed Data	Start Plotting Set Save Path Save Path: C:\Users\Poloskei Péter/save_data

Spectrogram – energy density:

Coherence: plasma waves – fast-ion losses

In spite of the high value of the number of averages (N = 20), the coherence is near to 1, which suggests **strong linear coupling** between **TAEs** and **fast-ion losses**

Toroidal mode numbers of TAEs

Coherence filtered Transfer function

plasma waves – fast-ion losses

Radial eigenfunction evolution of EPMs

- **Downchirping BAEs** and **upchirping EGAMs** have been analysed in a number of discharges.
- No significant change in the radial structure of BAEs has been observed.
- In the EGAM case the results show a slight shrinkage in the radial mode structure which is consistent with the physical picture.

Mode amplitude of chirping waves

- A chirping waves are modelled as: $f(t) = a(t) \cos[\phi(t)]$
- Constant amplitude, constant frequency approximation:

$$a_0(t) = \sqrt{rac{2}{\sqrt{\pi}\sigma}} \Big| \mathrm{STFT}(t,\omega=\omega_{\mathrm{ridge}}) \Big|$$

• Linear chirps:

$$a_1(t) = \sqrt{rac{2}{\sqrt{\pi}\sigma}} \sqrt[4]{1 + 4\phi''(u)^2 \sigma^4} \left| ext{STFT}(t, \omega = \omega_{ ext{ridge}})
ight|$$

Bicoherence for stationary processes

Used for detecting quadratic nonlinearities

 $B(f_1, f_2) = \mathbb{E}\left[X(f_1)X(f_2)X^*(f_1 + f_2)\right]$

 Bispectrum calculation as
 random walk on the complex plane

Bicoherence for instationary case

- Due to instationarity *"false high" bicoherence*
- Random walk with same total length, but different step length
- Significant differences in the probability density functions of bispectrum

Estimation of bicoherence significance

- Randomized bicoherence density function generated from instationary amplitudes
- Significance level can be estimated for measured value

$$\alpha = \int_{0}^{b^{m}} \rho(b) db$$

Method testing with different modelsystems

- Parameters of the model-system adjusted to later investigation
 - 30 ms simulated
 - 2 MHz sampling frequency
 - 10-30% additive white noise

$$m \equiv 1$$

$$\ddot{x}_1 = -(D_1 + Ex_1)x_1 + D_2(x_2 - x_1)$$

$$\ddot{x}_2 = -D_1x_2 - D_2(x_2 - x_1)$$

Stationary modes with additive broadband perturbations – linear case

Stationary modes with additive broadband perturbations – nonlinear case

Application on real measurements

WP6 Status and plans

- Develop a standard set of tools for the linear characterisation of chirping modes, comparison to simulations; linear characterization of chirping modes demonstrated on EGAMs, BAEs and bursting TAEs at the ASDEX Upgrade tokamak (2017) Development in progress: 2D mode number + radial eigenfunction identification
- Characterise the non-linear interactions by higher order spectra and band-power correlation with careful consideration of error propagation and significance levels, comparison to simulations; quantitative study of non-linear interactions of various fast particle-related transient modes (e.g. EGAMs, BAEs and/or bursting TAEs) with special emphasis on detecting wave-wave coupling (2018)
 Development in progress: statistics of higher order spectra for non-

stationary signals, testing on simple non-linear model systems