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Mode structures and nonlinear interactions

in tokamaks

Courtesy of Y. Xiao et al., POP 22, 022516 (2015)
✷ψ = poloidal magnetic flux

B0 = F (ψ)∇φ+∇φ×∇ψ

≡ ∇ζ ×∇ψ

q ≡
B0 ·∇ζ

B0 ·∇θ
= q(ψ)

✷ Filaments ⇒ Quasi-particles [Zonca et al, PPCF15]

✷ Representation based on the Poisson Summation Formula
[Z.X. Lu et al., POP12] ⇒

∑

m e
imθ = 2π

∑

m δ(θ − 2πm).
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✷ Generic fluctuation δφ(r, θ, ζ) =
∑

m,n exp(inζ − imθ)δφm,n(r)
can be decomposed as

δφ(r, θ, ζ) = 2π
∑

ℓ,n∈Z

einζ−inq(θ−2πℓ)δφ̂n(r, θ − 2πℓ) =
∑

m,n∈Z

einζ−imθ

×

∫

ei(m−nq)ϑδφ̂n(r, ϑ)dϑ =
∑

m,n∈Z

einζ−imθ
∫

ei(m−nq)ϑPBn(r, ϑ) [δφ]dϑ .

✷ Radial envelope (varying on meso-scales) and parallel mode structures
(quasi-particles)

δφ̂n(r, ϑ) = An(r)δφ̂0n(r, ϑ) ≃ An(r)δφ̂0n(ϑ) .

✷ Reduces to well-known ballooning formalism when separation of radial scale-
length applies L≫ LA ≫ |nq′|−1 [Z.X. Lu et al., POP12]
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✷ Mode structures can be represented by three degrees of freedom: the toroidal
mode number n, the radial envelope An(r) (with scale length LA); and the
parallel (to B0) mode structure δφ̂0n(r, ϑ), with only a slow radial variation
on the equilibrium scale length L.

✷ Correspondingly, nonlinear interactions can take the following three forms:
mode coupling between two ns, modulation of the radial envelope; and
distortion of the parallel mode structure [L. Chen et al., PPCF05].
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NL Dynamics and fluctuation induced transport

✷ Description of resonant wave-particle interaction as particles interacting
with quasi-particles.

✷ Quasi-particles carry energy and momentum. But unlike particles, quasi-
particles are not conserved in number: occupation number ∝ An(r, t).

✷ Fluctuation induced transport due to emission and re-absorption of toroidal
symmetry breaking perturbations [Zonca et al., PPCF 2015].

✷ Characteristic δφ̂0n(r, ϑ) radial
scale is L.

✷ However, characteristic radial
width of filaments ∝ |nq′|−1 due
to magnetic shear.

✷ Transport may become non-local
when |r2 − r1|>∼ |nq′|−1.
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The importance of zonal structures

⇒ Zonal structures (ZS) ⇒ coherent micro/meso-scale radial corrugations of
equilibrium in toroidal device plasmas [Chen, RMP16].

⇒ Zonal structures scatter instability turbulence to shorter-radial wavelength
stable domain ⇒ nonlinearly damp the instability
⇒ Self-regulation of plasma instabilities!

✷ Nonlinear interaction by mod-
ulation of the radial envelope
An(r, t).

✷ Generation of quasi-particle mul-
tiplets δΦ̂n.

✷More generally: phase-space zonal
structures [Zonca et al., NJP15].
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Phase space zonal structures

⇒ Phase space zonal structures (PSZS) ⇒ coherent long-lived formations in
the particle phase space

⇒ PSZS are undamped by (fast) collisionless dissipation mechanisms due to
wave-particle interactions [Zonca et al., NJP15]

Courtesy of X. Wang et al.
POP 23 012514 (2016)

✷ ⇒ important roles in transport
processes (phase-space)

✷ PSZS describe the deviation from
local thermodynamic equilibrium
[Falessi, ArXiV16]
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✷ The fluctuating particle distribution functions are decomposed in adiabatic
and nonadiabatic responses as [Frieman and Chen 1982].

✷ Considering ∂µF̄0 = 0 and since PSZS are undamped by (fast) collisionless
dissipation mechanisms, δgz = e−iQzδḠz and

δfz = e−ρ·∇δgz +
e

m
δφ0,0

∂F̄0

∂E
= e−ρ·∇e−iQzδḠz +

e

m
δφ0,0

∂F̄0

∂E
.

✷ Here, 0, 0 subscript to δφ indicates the m = n = 0 component; and, given
kz ≡ (−i∂r), e

iQz controls transformation to banana center frame; with

Qz = F (ψ)

[

v‖
Ω

−
(v‖
Ω

)

]

kz
dψ/dr

and the bounce averaging along unperturbed particle orbits is

[. . .] ≡

(
∮

dℓ

v‖

)−1 ∮
dℓ

v‖
[. . .]
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✷ The collisionless evolution equation for phase space zonal structures is

[Falessi, ArXiV16]

∂tδḠz =

[

eiQz

(

−
e

m

∂F̄0

∂E

∂

∂t
〈δLg〉0,0 −

c

B0

b×∇ 〈δLg〉 ·∇δg

)]

✷ Here,

〈δLg〉 = Î0(λ)
(

δφ−
v‖
c
δA‖

)

+
m

e
µÎ1(λ)δB‖ .

and În(x) ≡ (2/x)nJn(x) [Antonsen 80; Catto 81; Brizard 92],
Jn(x) are the Bessel functions, λ2 ≡ 2(µB0/Ω

2)k2⊥.

✷ The evolution equation for phase space zonal structures is valid on a time
scale up to O(δ−3)Ω−1, δ ∼ ρ/L, consistent with [Hinton and Hazeltine 76;
Frieman and Chen 1982].

✷ Collisions can be included by suitable gyro- and bounce-averaged collision
operator [Brizard et al 2010].
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✷ Particle transport equation is obtained as moment from PSZS evolution
equation; (similar result for energy transport):

∂t 〈〈δfz〉v〉ψ =
e

m
∂tδφ0,0

〈[

1−
(

e−iQz Î0

)(

eiQz Î0

)

]

∂F̄0

∂E

〉

v

−
1

V ′

∂

∂ψ

〈〈

V ′
(

e−iQz Î0

)

[ceiQzR2∇φ ·∇ 〈δLg〉 δg]
〉

v

〉

ψ
.

V ′dψ = dV plasma
volume element

✷ PSZS bear fundamental information on the nonlinear evolution of plasma
equilibria and related transport, and give back expressions of turbulent

transport in the long wavelength limit
(

eiQz Î0

)

→ 1 [Falessi, ArXiV16].

✷ Adding collisions, the density transport equation can be written, given the
radial particle flux Γ ≡ nV :

〈〈∂tf〉v〉ψ = −
1

V ′

∂

∂ψ

[

V ′ 〈nV · ∇ψ〉ψc + V ′ 〈nV · ∇ψ〉ψNC + V ′ 〈nV · ∇ψ〉ψgk

]
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✷ The contributions from classical, neo-classical, and fluctuation-induced (gy-
rokinetic) fluxes (trasport) is additive up to the O(δ−3)Ω−1 time scale.

✷ This result is obtained within the transport ordering [Hinton and Hazeltine
76] and the gyrokinetic ordering [Frieman and Chen 1982]
⇒ On longer time scales these processes influence each other and cannot
be considered mutually independent.

✷ Interesting interplay of collisional and fluctuation-induced transports are
expected where transport ordering and gyrokinetic ordering are stretched.
⇒ edge transport? phase transitions? (transport barriers) ...
⇒ Consistent with [Sugama et al., 1996].

Fulvio Zonca



2nd NAT ENR meeting (MPG-01 Project) 13

Single-n coherent nonlinear fluctuations

Generation of the distribution δfk due
to the interaction of f0 with δφk.

Nonlinear distortion of f0 due to emis-
sion and absorption of the field δφk.

The diagram of the process is defined in
the top frame, while the solution of the
“Dyson” equation corresponds to the
summation of all terms in the Dyson
series (bottom).
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Dyson Equation: single-n coherent

nonlinear interaction

✷ Dyson Equation describes fluctuation induced transport in the presence of
a single-n quasi-particle ⇒ Instability in strongly driven system.

✷ Non-perturbative interplay of
SAW with Energetic Particles
(EP).

✷Mode structure evolution on same
time scale of EP transport

✷ Self-consistent ⊕ non-adiabatic
phase space dynamics

✷ Energetic Particle Modes (EPM).

[Chen RMP16]
[Zonca et al. NJP 2015]
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✷ PSZS evolution equation contains both zonal flows and fields as well as the
nonlinear effect of fluctuation-induced transport.

∂tδḠz =

[

eiQz

(

−
e

m

∂F̄0

∂E

∂

∂t
〈δLg〉0,0 −

c

B0
b×∇ 〈δLg〉 ·∇δg

)]

✷ In turn, the feedback of phase space zonal structures onto δgn (n 6= 0) is

(

∂

∂t
−

inc

dψ/dr
〈δLg〉z

∂

∂r
+ v‖∇‖ + vd ·∇⊥

)

δgn = i
e

m

(

QF̄0−
nB0

Ωdψ/dr
(e−iQz)

∂δḠz

∂r

)

〈δLg〉n .

✷ Accounts for zonal flows/fields as well as corrugation of radial profiles.

QF̄0 = i
∂F̄0

∂E

∂

∂t
− i

b×∇F̄0

Ω
·∇ .

✷ This forms a closed system of equations, once evolution equations for the
zonal structures are given along with those of nonlinear n 6= 0 fluctuations
[Z. Qiu et al., 2016-17].
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Fishbone Paradigm for SAW-EP nonlinear

interplay

✷ Consider |ω| ∼ |ω̄d| ≪ |ωb| ⇒ 2 integrals of motion: µ and J =
∮

v‖dℓ.

✷ The system behaves as non-autonomous, non-uniform system with one
degree of freedom. Reminiscence of 3D equilibrium system.

✷ Crucial difference with the beam plasma system: non-autonomous, uniform
system with one degree of freedom.

[Zonca et al. NJP 2015]
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✷ Introduce the standard Laplace transform notation; e.g. F̂0(ω) =
(2π)−1

∫∞

0
eiωtF0(t)dt.

✷ The Dyson equation for F̂0(ω) and nearly periodic fluctuations,
ωk0 = ω0(τ) + iγ0(τ), becomes (introducing sources and collisions)

F̂0(ω) =
i

ω
StF̂0(ω) +

i

ω
Ŝ(ω) +

i

2πω
F̄0(0) +

e

m

nc

ω(dψ/dr)

∂

∂r

{[

Q∗
k0,ω0(τ)

ω∗
0(τ)

×
F̂0 (ω − 2iγ0(τ))

ω − ω0(τ) + nω̄dk0
+
Qk0,ω0(τ)

ω0(τ)

F̂0 (ω − 2iγ0(τ))

ω + ω∗
0(τ)− nω̄dk0

]

ω̂dk0
∣

∣δφ̄k0(r, τ)
∣

∣

2

}

✷ This equation can be specialized to a variety of cases of practical interest,
including EPM convective amplification via soliton formation [Zonca et al.
NJP 2015] and the nonlinear fishbone cycle [Chen RMP16].
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✷ It is instructive to move to the t-representation for nonlinear fishbone cycle.
Assuming a rigid plasma displacement δξr0, the evolution equation for the
PSZS can be cast as [Chen RMP16]

∂

∂t
F0(t) ≃ StF0(t) + S(t) + 2

(

ω̄d
ω0(τ)

)

∂

∂r

[

∫ +∞

−∞

e−iωt

(

∂F̂0(ω)

∂r
−
ω0

ω̄d

E

R0

∂F̂0(ω)

∂E

)

×
(γ0 − iω)

(ω̄d − ω0)2 + (γ0 − iω)2
|ω0(τ)|

2|δξr0|
2dω

]

.

✷ Fishbone spatiotemporal structures affect EP transport and vice-versa
This process is generally non-perturbative. ⇒ Phase locking [Chen RMP16].

✷ In the same way, one can write explicitly the expression of resonance broad-
ening, due to fluctuation-induced wave-particle decorrelation. [Dupree 66]
⇒ Fluctuation induced diffusion in space rather than velocity space.

✷ Detailed expression depends on the assumed (or computed) fluctuation spec-
trum. Approach is fully consistent with a statistical analysis [Dupree 66].
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✷ By extension of the PSZS evolution equation, and introducing the genera-

tor of coordinate transformation to banana centers, δgk = e−iQkδḠk, with
v‖∇‖Qk + ṽd ·∇⊥Qk ≡ 0,

(ω̄d − ω)kδḠk = i

[

eiQk

(

QF̄0 〈δLg〉k +
c

B0

b×∇ 〈δLg〉 ·∇δg

)]

[Dupree 66; Laval & Pesme 84,99]
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✷ Isolating the nonlinear harmonic generation (diagonal) from linear and other

nonlinear response,

(ω̄d − ω)k0δḠk0 = i
[

eiQk0QF̄0 〈δLg〉k0
]

+ [OTHER NONLINEAR]

−
∑

k

1

V ′

∂

∂ψ

{

ceiQk0

(

R2∇φ ·∇ 〈δLg〉−k
) e−iQk+k0

(ω̄d − ω)k+k0

×
∂

∂ψ

[

cV ′eiQk+k0

(

R2∇φ ·∇ 〈δLg〉k
)

e−iQk0δḠk0

]

}

✷ Formally, this equation can be written as (geometry effect through ω̄d)
{

i [ω̄′
d0ρ− (ω0 − ω̄d0)]−D

∂2

∂ρ2

}

δḠk0 = L0 + [NL OFF DIAGONAL]

• Resonant particle response (D real): resonance broadening

• Non-resonant particle response (D imaginary):
non-linear frequency shift

✷ Both effects are crucial for the nonlinear dynamics.
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✷ Comparative study with the beam-plasma system
[Carlevaro & Montani 2017]

• importance of spectral density and intensity

• crucial role of equilibrium geometry and non-uniformity

• assess conditions for applicability of simplified/reduced models;
e.g. weak turbulence theory

• identify possible novel and/or “unexpected” behaviors in burning fu-
sion plasmas
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Summary and discussion

✷ Gyrokinetic theory & simulation provide a general framework for studying
fluctuations and ensuing transport in strongly magnetized plasmas:

• Complex behaviors due to many interacting degrees of freedom

• Hierarchy of spatiotemporal scales and possibility of reduced NL
dynamic descriptions depending on relevant time scales

• Framework for bridging NL and transport time scales

✷ Applications: Fluctuation-induced (phase space) transport
• Description in terms of particles interacting with quasi-particles

• Phase space zonal structures bear fundamental information on the
nonlinear evolution of plasma equilibria and related transport

• Adding collisions, PSZS NL evolution suggest interplay of collisional
and fluctuation induced transport on longer (than typical transport)
time scales ⇒ Important for burning plasma

• Renormalized solution for the PSZS
⇒ Crucial role of geometry, nonuniformity (advanced concepts)
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