

(NAT WP3) Multiple-n simulations of Alfvénic modes

Xin Wang¹

and in collaboration with Ph. Lauber¹, Z. Lu¹, F. Zonca² and HMGC group in ENEA Frascati

1 Max Planck Institut für Plasmaphysik, Garching, Germany 2 ENEA, C.R.Frascati, C.P. 65 - 00044 - Frascati, Italy.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Progress of Hybrid MHD-gyrokinetic simulations

EUROfusion enabling research projects:

- NLED Progress achieved in understanding nonlinear dynamics of single-n mode driven by energetic particles (saturation mechanism, non-adiabatic chirping etc.) due to nonlinear wave-particle interactions.
- NAT Progress achieved in understanding nonlinear dynamics of multiple-n modes simulations. In such cases, apart from nonlinear wave-particle interactions, wave-wave couplings are taken into account, which can modify qualitatively and/or quantitatively the nonlinear dynamics w.r.t. single-n simulations. Meanwhile, zonal flow physics is the first time investigated by (X)HMGC code, and is the first time carried out by a hybrid-code which includes kinetic thermal ion effects.
- MET Hybrid simulations (e.g. XHMGC and HYMAGYC) can help further investigation of multi-scale energetic particle transport in fusion devices.

(X)HMGC model equations

Hybrid reduced $O(\epsilon_0^3)$ MHD equations (HMGC) (Briguglio et al., Phys. Plasmas 2, 3711 (1995); Wang et al., Phys. Plasmas 18, 052504 (2011)).

$$\frac{\partial \psi}{\partial t} = \frac{R^2}{R_0} \nabla \psi \times \nabla \varphi \cdot \nabla U + \frac{B_0}{R_0} \frac{\partial U}{\partial \varphi} + \eta \frac{c^2}{4\pi} \Delta^* \psi + O(\epsilon^4 v_A B_{\varphi}), \quad \text{(the evolution of the poloidal magnetic flux function)}$$

$$\hat{\rho}\left(\frac{D}{Dt} + \frac{2}{R_0}\frac{\partial U}{\partial Z}\right)\nabla_{\perp}^2 U + \nabla\hat{\rho}\cdot\left(\frac{D}{Dt} + \frac{1}{R_0}\frac{\partial U}{\partial Z}\right)\nabla U = \frac{1}{4\pi}\mathbf{B}\cdot\nabla\Delta^*\psi + \frac{1}{R_0}\nabla\cdot\left[R^2(\nabla P + \nabla\cdot\mathbf{\Pi}_{\mathbf{s}})\times\nabla\varphi\right] + O\left(\epsilon^4\rho\frac{v_A^4}{a^2}\right), \text{ (the evolution of the scalar potential)}$$

$$\Pi_{s}(t,x) = \frac{1}{m_{s}^{2}} \int d\bar{Z} D_{Z_{c} \to \bar{Z}} \bar{F}_{s}(t,\bar{\mathbf{R}},\bar{M},\bar{V}) \times \left[\frac{\Omega_{s}\bar{M}}{m_{s}} \mathbf{I} + \mathbf{b}\mathbf{b} \left(\bar{V}^{2} - \frac{\Omega_{s}\bar{M}}{m_{s}} \right) \right] \delta(\mathbf{x} - \bar{\mathbf{R}})$$

where $\frac{D}{Dt} = \frac{\partial}{\partial t} + v_{\perp} \cdot \nabla$, $U = -c\phi/B_0$, $Z^i = (\mathbf{R}, M, V)$ are the gyrocenter coordinates ψ is the magnetic stream function ϕ is the electrostatic potential "s" stay for EP species, and/or thermal ions, ...

Nonlinear simulations

HMGC code retains both fluid (wave-wave) and energetic particles nonlinearities. Nonlinear simulations are performed by the following steps:

- The magnetic flux function $\psi_{0,0}$ and $\psi_{0,1}$ are fixed for now, but can also evolved (stable simulation) by using radially dependent resistivity profile.
- The scalar potential $\phi_{0,0}$ are not evolved.

Step I. Multiple-n simulations without wave-wave coupling: nonlinear coupling through EP drive

Step 2. Multiple-n simulations with wave-wave coupling: nonlinear coupling through both EP drive and wave-wave coupling (collaboration w.r.t WP6)

• The scalar potential $\phi_{0,0}$ are evolved.

Step I. Simplified electrostatic simulation: GAM and zonal flow residual levelStep 2. Nonlinear generation of zonal fields by an EPM mode

Nonlinear coupling through EP drive (i)

Nonlinear coupling through EP drive (ii)

Nonlinear coupling through EP drive (iii)

Nonlinear coupling through EP drive (iv)

Multiple-n modes without wave-wave coupling

- Linear phase: most unstable mode not change, subdominant modes have slightly higher growth-rates.
- Once the sub-dominant mode (n=2) amplitude overtakes the most unstable one, both n=3 and n=4 modes amplitude are strongly modulated w.r.t. the singlen simulations.
- How the resonance structures overlap?
- How the phase space structure modified by the overlapping resonances?
- Although larger amplitudes observed, weaker frequency chirping happens.
- Enhancement of EP transport w.r.t. single-n simulations.

A paper will be prepared by answering those questions.

Nonlinear coupling through both EP drive and fluid NL (i)

Mode coupling (e.g. three wave scheme $n = n_1 + n_2$) through the EP term $\nabla \cdot \Pi_H$ [Vlad et al., 2018] can be recognized schematically by the following: $\Pi_H \propto \delta F_H$

$$\left(\frac{\partial}{\partial t} + \frac{dZ^{i}}{dt}\frac{\partial}{\partial Z^{i}}\right)\delta F_{H} = -\left(\frac{dZ^{i}}{dt}\right)_{pert}\frac{\partial}{\partial Z^{i}}F_{H;eq}$$

After formally splitting the generalized velocities in the l.h.s. in unperturbed (unpert) and perturbed (pert) ones:

$$\left[\frac{\partial}{\partial t} + \left(\frac{dZ^{i}}{dt}\right)_{unpert} \frac{\partial}{\partial Z^{i}}\right] \delta F_{H} = -\left(\frac{dZ^{i}}{dt}\right)_{pert} \frac{\partial}{\partial Z^{i}} F_{H;eq} - \left(\frac{dZ^{i}}{dt}\right)_{pert} \frac{\partial}{\partial Z^{i}} \delta F_{H}$$

Passing to toroidal Fourier components:

$$\left[\frac{\partial}{\partial t} + \left(\frac{dZ^{i}}{dt}\right)_{0}\frac{\partial}{\partial Z^{i}}\right]\delta F_{H;n} = -\left(\frac{dZ^{i}}{dt}\right)_{n}\frac{\partial}{\partial Z^{i}}F_{H0} - \Sigma_{\tilde{n}}\left(\frac{dZ^{i}}{dt}\right)_{n-\tilde{n}}\frac{\partial}{\partial Z^{i}}\delta F_{H;\tilde{n}}$$

Nonlinear coupling through both EP drive and fluid NL (ii)

Nonlinear coupling through both EP drive and fluid NL (iii)

single-n simulations

multi-n EP drive

multi-n EP drive and fluid NL

Nonlinear coupling through both EP drive and fluid NL (iv)

GAM and zonal flow (i)

Simplified vorticity equation

$$\hat{\rho}\left(\frac{D}{Dt} + \frac{2}{R_0}\frac{\partial U}{\partial Z}\right)\nabla_{\perp}^2 U + \nabla\hat{\rho}\cdot\left(\frac{D}{Dt} + \frac{1}{R_0}\frac{\partial U}{\partial Z}\right)\nabla U = \frac{1}{4\pi}\mathbf{B}\cdot\nabla\Delta^*\psi + \frac{1}{R_0}\nabla\cdot\left[R^2(\nabla P + \nabla\cdot\mathbf{\Pi}_{\mathbf{s}})\times\nabla\varphi\right] + O\left(\epsilon^4\rho\frac{v_A^4}{a^2}\right)$$

Simulation results:

- I. Flat q profiles
- *2.* $\epsilon = 0.1$
- 3. Scanning parameters are: q = [1.2, 1.4, 1.6, 2.0, 2.5],and $\frac{V_i}{V_A} = [0.04, 0.06, 0.08]$ and $\frac{\rho}{a} = [0.003125, 0.0046875, 0.00625]$

GAM and zonal flow (ii)

Nonlinear generation of zonal fields by an EPM mode

Conclusions.

- Comparison between single-n and multiple-n simulations of Alfvénic modes has been performed.
- Without wave-wave coupling, the multiple-n simulation shows different amplitude, frequency and mode structure evolution of each mode w.r.t. the single-n simulations.
- With wave-wave coupling, NL coupling is shown from MHD terms and mediated by EP term.
- (X)HMGC is the first time used to simulate GAM and zonal flow. The real frequency, damping rate and the zonal flow residual level agree well with the analytical prediction.
- Nonlinear generation of zonal flow by a growth EPM has been simulated. The growth rate of zonal flow and the radial mode structure are investigated.

Report WP3 (X.Wang) Milestones and Deliverables 2017/2018, Work package 3 Main contributors: X.Wang, Z. Lu

- develop and implement scheme to extract zonal current dynamics from resistivity effects (2017)
- benchmark with other models within the project, study importance of kinetic thermal ion response in comparison to MHD for the zonal dynamics (2018)
 - Nonlinear zonal flow generation by EP driven Alfvénic mode complete
 - no benchmarks with other code
 - Radially dependent resistivity can stable the simulation with zonal current evolved.
 - Instead: efforts contributed to multiple-n simulations