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Energetic particle (EPs) transport is a key physics element of burning plasmas @52)

4 types of EP

energetic particle (EP) transport:
distributions (Q) |
° convective
« diffusive
eavalanche

global MHD

instabilities * ballistic

EP-driven
instabilities

ECCD/ECRH ,
EPs: NBI, ICRH

instabilities

fuelling/

A

impurity
seeding background profiles (phase space) zonal
> state/structure (PSZS)

final goal: predicting the self-organisation of a burning plasma
challenge: complex interdependence on vastly different spatial and temporal scales

this talk: special role of DTT
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EP transport: selected experimental observations
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* for multiple overlapping Alfvén eigenmodes (AEs) resonances: stiff EP
transport found at DIII-D [Collins, Heidbrink 2015-2018 ], as predicted by QL
theory [Sagedeev&Galeev, Kaufman 1972, ...]; high q, large orbits, dominated by

losses rather than redistribution

* in JET re-deposition of EPs (ICRH) was observed: core-localised TAEs
redistribute EPs, redistributed EPs drive edge-TAE [Nabais et al, PPCF 2019]

* mode chirping and avalanches-type events (,ALE‘) found in many

experiments [Kusama, Shinohara, JT-60U 1999+]

* bursting, non-linear mode-mode couplings and EP transport measured
in ASDEX Upgrade EP super-shots [Lauber 2014+], .i.e. further
development of AUG NLED benchmarks case [Viad 2020-2023, Vannini 2019,

Rettino 2021-23] : role of impurity control on EP dynamics

DTT will contribute to bridge present day observations to ITER/DEMO

for a comprehensive review please refer to dedicated review articles, e.g.
[NF ITPA special issue 2006, update 2023/24, Heidbrink 2008, Breizman& Sharapov 201 |,
Lauber 2013, Chen&Zonca RMP 2015, Gorelenkov&PinchesToi 2014,Todo 2019, Qiu 2023,..]
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2. Inferred Transport
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* expected EP transport in ITER
* role of DTT

* available and emerging new tools
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expectations for ITER I5SMA (@)
[A.R.POLEVOI ET AL. . Plasma Fusion Res., 5 (2002)]
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B0=5.3T, R0O=6.2m, D, T,He-ash, Be,a,NNBI-D [S.D. Pinches et al PoP,2015
Ph. Lauber PPCF 201 5]

presently these calculations are updated: new baseline, heating mix, density peaking? W transport?
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expectations for ITER ISMA
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subdominant modes with

J lower n in outer core

recently confirmed
by JET experiments
[M. Fitzgerald, 2023]
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expectations for ITER ISMA
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Amplitude /iB/B
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HAGIS/LIGKA model, ITER |5 MATAEs [Schneller, 2015]

high-n branch
in multi mode
simulation

low-n branch
in multi mode
simulation

time /10°% s

T 3.0C

‘sea’ of weakly unstable TAEs
expected with small EP
transport;
agreement with diffusive/quasi-
linear estimates

6 :
fixed amplitude simulation at )
single mode saturation levels |
5
Z,
(%]
G
- 3
i

2| weak radial EP

1 redistribution;

agreement with QL model

01 02 03 06

radius

04 05 07 10

08

09

20.2.2024 DTT Science Meeting



expectations for ITER I5MA : scale nep by 2
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Amplitude 6B/B

HAGIS/LIGKA model, ITER |5 MATAEs [Schneller, 2015]
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ealso found in reduced descriptions: |d beam plasma model [Carlevaro, 2015-17,2021]

*above simulations do not consider wave-wave non-linearities

*collisions influence saturation level [Slaby 2019]
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expectations for ITER I5MA : scale nep by 2
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ITER 15 MA case - ORB5 [T Hayward-Schneider NF 2021
HAGIS/LIGKA model, ITER 15 MA TAEs [Schneller, 2015] [T Hayw ]
10-1 4
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ecompare LIGKA/HAGIS model to ORB5: global electromagnetic gyrokinetic code using the PIC approach
in toroidal geometry [Lanti CPC 2020, for EP physics: Biancalani, Bottino, Hayward-Schneider,Vannini,... 2012-21]

* Effectively mitigates with the so-called cancellation problem using the pullback scheme (leads to an order
of magn. increase of time step) [Mishchenko CPC 2019]

every similar linear and non-linear properties of ITER 15 MA case were found [T Hayward-Schneider 2021, AAPPS-
DPP 2020]

20.2.2024 DTT Science Meeting



\

° i\
what kind of EP transport? i
N. Carlevaro, G. Montani, M.V. Falessi, Ph. Lauber, EPS22, P5a.113 1D : 32056
10 - 7=0. //
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what kind of EP transport?
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* Lagrangian Coherent Structures: most repulsive or attractive material lines (transport barriers).
 Early times show diffusive behaviour at high-n TAE locations

e Late times show avalanche-like behaviour at low-n branch
[N. Carlevaro et al, to be submitted]
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ingredients for reduced energetic particle (EP) transport models:

needed for scaling from TCV-AUG-JET, W7X... to JT-60SA-DTT-ITER-DEMO, in particular burning plasmas

required models:

non-linear/quasi-linear global kinetic e.m.+ background transport;

4. self-organisation - back reaction of T e . e
allow significant deviations from neoclassical equilibrium

EP transport on profiles and

background transport

non-linear/quasi-linear global kinetic e.m. + long

3. EP transport and losses time scales (source +sink)

2. non-linear mode evolution, non-linear global kinetic e.m.

saturation mechanisms

linear global kinetic e.m.
|. mode stability

20.2.2024 DTT Science Meeting 12




aspects of self-organisation in a fusion plasma

* in ITER/DEMO, core TAEs can be weakly unstable; edge TAEs are weakly damped and can be driven non-linearly [Pinches,
Lauber, Schneller 2014/2015,T Hayward 2019, ORB5]

* let us assume that EPs stabilise background turbulence under ITER/DEMO conditions [Mantica, Citrin et al, 2007-2024] when
Bthermal and [Bep start to increase during ramp-up; or also density peaking increases reactivity

* Tpr profiles will be more peaked than in [Polevoi 2002] - need to understand exact conditions and time scales for peaking

* peaked Tp profiles will lead to increased reactivity ~T2 (or density peaking)
* a particle profiles will also peak until significant EP transport sets in (large slowing-down time scales!)

» the nature of this transport determines how large the ,overshoot® will be - diffusive in the core but large enough to trigger
avalanche as in ITER example? ( factor 2 in Vna/na)

» flattened EP profile will negatively impact the EP stabilisation mechanism - additional Ti flattening might set in
* note that this ,limit cycle oscillation‘ comprises collisional, transport and EP-transport times - large time scale separation

* in order to avoid large overshoots, mitigation for EP-generated transport barriers may be needed (see ELMs)
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possible control mechanisms

(

[Bierwage Nat.Comm 2022]

Initial

. . . --=-=-03ms |
* current profile: tailor g-profile in order to ensure TAE resonance overlap to stay in

———(0.5ms |
diffusive transport regime (difficult under reactor conditions)

* sawtoothing: control sawtooth crashes to tailor energetic a’s and He-ash

Density n, (arb.units)

* D-T fuelling: control D:T mix; higher D fraction increases ion Landau damping of TAEs;
higher T fraction decreases ion LD

* impurities ,destabilise' AEs and thus may prevent overshoots (central ECRH heating)

3.5 MeV alphas

0
2.6 2.8 3 3.2
Major radius R [m]
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role of DTT for burning plasma physics @

DTT:

|6MW ECH

4MW ICH

|0OMW NNBI (~500keV)

Br=6T
1,=5.5 MA
R=2.2m
a=0.7m

key opportunity for EP studies:

JT-60SA:

7MW ECH

|OMW NNBI (~500keV)
24MW PNBI

Br=2.25T
1,=5.5 MA
R=2.96m
a=1.18m

flexibility of operating at different currents and fields while keeping high heating power [RP, chapter 4]

more space for diagnostics (less PNBI ports)?
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role of DTT for burning plasma physics

scan unstable AE mode number spectrum - larger capability than other machines, including super-Alfvénic resonances
(DTT n~17,ITER n~25; FOW effects - linear physics)

study overlapping conditions of AEs and characterise nature of transport: as normalised parameters match burning
plasmas [chapter 7], this will give indications on EP losses (core-edge integration, linear - quasi-linear/non-linear
hybrid)

study steady-state / chirping transitions, as transport increases significantly when AEs are chirping (non-linear) [X.
Wang 2022]

interaction of EPs with turbulence: wide scan over B-range and EP-distribution function properties (non-linear/ multi-
scale) [Di Siena et al,2021]

fusion mock-up experiments: as 3 and Ti increase (using NNBI + ECRH) - add ICRH to mimic additional drive due
to increased reactivity (non-linear/ multi-scale/ neoclassical coupling)

use current profile and/or impurity control to influence AE stability - exploit W wall and similarity scaling (non-linear/
multi-scale/ neoclassical coupling + control )

use light impurities to mimic dilution and/or D:T mix scalings
(non-linear/ multi-scale/ neoclassical coupling + control)

Energy [keV)
o

use comprehensive diagnostics to measure non-linear zonal state (in particular phase space distortions)

— [Du, PRL 2022]
j i.‘ ' -

..... )

20.2.2024 DTT Science Meeting 1.4 1.6



\
2
J,
v
=z

(

available and emerging new theories/tools

requirements:
* validation and verification for reactor relevant physics

* special role of EPs and phase space
* able to be eventually integrated in transport codes - aim for IMAS compatibility
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PSZS theoretical framework

» comprehensive PSZS transport theory: include zonal fields as e.m. counterpart of
phase space zonal structures - complete description of nonlinear equilibrium

* nonlinear equilibrium connected to (anisotropic) CGL description

 application of theory to EGAMs - explicit equations for non-linear chirping dynamics -
ready for comparison with simulations

[M.V. Falessi et al, EPS 2023, invited talk]
[M.V. Falessi et al, EFTC 2023, invited talk]
[M.V. Falessi et al, IAEA FEC 2023]

[M.V. Falessi et al, NJP 25 123035 2023]

Self-consistent description of EPM repeated burst dynamics using the PSZS theoretical framework

. -1
propagator (wg + 90; — lwy — A1 — Ay) [F Zonca et al, IAEA FEC 2023]
[F. Zonca et al, AAPPS-DPP 2023]

A = —1e~ e [eiQZ (59289 + 6€,0

shearin ; ; ) ; 7 e !
g AQ/Z{e—zlﬁc [elQG (696'80 + 55@55) :I ell’ﬁcm
resonance broadening d

& frequency shift x e~il'de [eiQG (59'G89 + 58'685)] eilde

+beat-driven vs spontaneous excitation of ZFs [Chen/Zonca/Qiu, 2024] + 3D version of PSZS equation [A. Zocco et al, 2023]
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ATEP code - physics and structure =

orbit+zonal averaging <dPo/dt>
14 T T T T T T T
‘ %(5}3 PSZS transport theory [M. Falessi et al, 2017-23]
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EP stability workflow, based on linear GK code LIGKA

cautomate analysis of stable/unstable Alfvén eigenmodes:
for many equilibrium time slices
for many relevant toroidal mode number (Tokamak only, axisymmetry)
relevant types of modes
euse hierarchy:
estart with simple, analytical model
euse local model
euse global model
eunderstand physics and numerical challenges:
edetermine (kinetic) continuous spectra
einvestigate local vs global damping mechanisms
*determine resolution requirements for expensive runs

edetermine sensitivity of AEs: look at series of equilibria, include uncertainties

[Ph. Lauber,

V.-A. Popa,

T. Hayward-Schneider+
ITER support ]

* be general: use IMAS mhd_linear IDS to store results - each model is exchangeable (e.g.

spectrum: LIGKA or Falcon)
* be fast: use reduced models where possible
* be robust enough to use it as fundamental ingredient for transport models
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EP stability VF: design criteria N

ecautomate analysis of stable/unstable Alfvén eigenmodes:
for many equilibrium time slices
for many relevant toroidal mode number (Tokamak only, axisymmetry)
relevant types of modes

euse hierarchy:

modules available on gateway/ ITER cluster
see training course (July 2023)

*unde https://indico.euro-fusion.org/event/2729/

*TAVESTIgate Tocar Vs global damping Mecnanisms
*determine resolution requirements for expensive runs
edetermine sensitivity of AEs: look at series of equilibria, include uncertainties
* be general: use IMAS mhd_linear IDS to store results - each model is exchangeable (e.g.
spectrum: LIGKA or Falcon)
* be fast: use reduced models where possible
* be robust enough to use it as fundamental ingredient for transport models

20.2.2024 DTT Science Meeting
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application: present-day experiments
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» analyse L-mode,H-mode and transition phases:

beat infamous problem of AE stability sensitivity to profiles
- compare trends instead of single time slices

+ compare local and global models

 systematic uncertainty quantification feasible

- applied also to TCV, JET, JT-60SA, ITER

integrated data analysis + !
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" global -
local - 4

3 3.13.23.33.43.53.63.7

time [S]

oy
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radius [r_pol]

damping rate [%]

e.s. potential

+ automated processing of 160 time slices based on IDA

+ fully implemented in IMAS, ensuring reproducibility

4 L
5 L

time [S]

3 3132333435363.7

t=3001 [ms] =
E_par =

0O 02 04 06 0.8

radius [r_pol]

[Lauber, EPS 2022, Popa 2020-2023]
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ATEP code - kick model limit
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ATEP code - energy conserving QL model (9
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ATEP code: back-mapping to configuration space
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return non-linear EP density, current, pressure to transport code
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new neoclassical building block for ATEP 3D [G Meng, Ph. Lauber, submitted NF 2024]

0
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+ Tib [%(Tb(qus(SF)Z +

o€
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z

* use collision operator in HAGIS code [A. Bergmann, PoP 2001]

 calculate orbit averaged collision-coefficients in CoM space
* separate co- and counter-passing regions, use IMAS-given n,T profiles

compare to SPOT [M. Schneider]: reasonable agreement
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MHD-kinetic hybrid models deliver benchmarks for reduced models
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» together with TSVV10: non-linear benchmark for NLED AUG case has been carried out
[G.VIad, IAEA FEC 2023, submitted NF] - important benchmark for ATEP code suite.
* note large instability-induced EP transport, deviating substantially from neoclassical values
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Fully self-consistent global ORB5 simulations in presence of EPs and turbulence @)
With Zonal Flow Without Zonal Flow [X Wang, ITPA 2022]
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* keep n=[0-40], high-n fluctuation driven by thermal background can develop, EPs drive n=2-5 TAE/EPMs
* result: zonal flows strongly influence the chirping behaviour - typically preventing chirping; turbulence level less important
* in the future: aim for connection to theoretical nonlinear theories and provide input for reduced models
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comparison of reduced models with ORB5

comparison of PSZS between ATEP and ORB5: n=19 TAE ITER #101006 (ongoing)

ORBS5: slowing down ATEP: phase space fluxes ORBS5 vs ATEP
n=18+19 case, linear phase n=18+19 case

sp=fast; t=120000w;%; A=0.0 . h_Ot Maxwelllan _sp=fast; t=120000wg'; A=0.0
100 r 1079 ; ' ’ 100 1070
80 5 I 10-10 ’ 80 1010
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Z10-1

~10-10 | _10-10

~107°

b e et B e e 090 9.2 9.4 0.6 28

Py
[T Hayward-Schneider, A. Bottino; TSVV-10]

remaining differences: non-perturbative modes in flat-shear scenario

very challenging, but promising start for comprehensive quantitative match!

PSZS about to become ,gold- standard‘ for comparison of non-linear runs and reduced models
comparing moments will remain important, but not sufficient for qualifying simulation results
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ORBS5 studies of TAE-induced ZF - starting to include ZFs in reduced models g}_)})
, , ili : +
comprehensive AE + ZF studies + turbulence (ORB5/TSVV10) EP, Stab'“rthII:;LAE ZBZ,F NE 2017
here: JET case [J. N. Sama, submitted to J. Plasma Phys. (2024)] using analytical theory [Qiu, ]
ITER case
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propagator (wg + 10y — lwp — Ay — Ag)_l
* stabilising influence of ZF on ITG spectrum demonstrated Ay = it [ei0- (500, + 66,05 )T
* reasonably large TAE amplitude required for stabilisation shearing 7,2« o b+ sk Jomo Ly
. m werr — l'wy
» PSZS diagnostics available as a standard diagnostics in ORB5 e i [ (o = o) .

building on successful comparison of theory with
GTC fishbone simulations [Brochard, accepted 2023]
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summary (@)

DTT can address very specific and relevant questions concerning burning plasma
physics

core-edge integration as main focus of the machine open opportunities for burn-
control studies (impurity control, EP transport control)

DTT is important opportunity for the validation and verification of reactor relevant
physics - special role of EPs and phase space

developing theories and tools for reduced modelling need to be integrated in
transport codes
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