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Energetic particle (EPs) transport is a key physics element of burning plasmas

4 types of EP 
transport:

• convective
•diffusive
•avalanche
•ballistic

final goal:  predicting the self-organisation of a burning plasma
challenge: complex interdependence on vastly different spatial and temporal scales
this talk: special role of DTT

energetic particle (EP)
distributions (α)

EP-driven 
instabilities

background profiles

ECCD/ECRH , 
EPs: NBI, ICRH

(phase space) zonal
state/structure (PSZS)
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global MHD
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EP transport: selected experimental observations  

• for multiple overlapping Alfvén eigenmodes (AEs) resonances: stiff EP 
transport found at DIII-D [Collins, Heidbrink 2015-2018 ], as predicted by QL 
theory [Sagedeev&Galeev, Kaufman 1972, …]; high q, large orbits, dominated by 
losses rather than redistribution

• in JET re-deposition of EPs (ICRH) was observed: core-localised TAEs 
redistribute EPs, redistributed EPs drive edge-TAE [Nabais et al, PPCF 2019] 

• mode chirping and avalanches-type events (‚ALE‘) found in many 
experiments [Kusama, Shinohara, JT-60U 1999+]

• bursting, non-linear mode-mode couplings and EP transport measured 
in ASDEX Upgrade EP super-shots [Lauber 2014+],  .i.e. further 
development of AUG NLED benchmarks case [Vlad 2020-2023,  Vannini 2019, 
Rettino 2021-23] : role of impurity control on EP dynamics

• DTT will contribute to bridge present day observations to ITER/DEMO

[Heidbrink, 2015]

ITPA meeting on EP, Padova, 21.10.2014

  
ASDEX Upgrade

Comparison theory-experiment

TAEs at ASDEX-Upgrade (#21007, Mirnov coils)

   Shot 21007: MHA:B31-14
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• measured routinely by magnetic pick-up coils (mode number detection), soft-X-ray cameras
(displacement fluctuations), fast ion loss detector (resonance condition)

• B-field ramp, drop in density: Alfvén scaling of TAEs (B/
√

µ0min)

• observed mode numbers (n = 3....7) match orbit widths of ICRH-ions

IPP Colloquium, Garching, January 2009 32
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[AUG, Lauber 2014]
for a comprehensive review please refer to dedicated review articles, e.g.
[NF ITPA special issue 2006, update 2023/24, Heidbrink 2008, Breizman& Sharapov 2011,
Lauber 2013, Chen&Zonca RMP 2015, Gorelenkov&PinchesToi 2014, Todo 2019, Qiu 2023,..]

[Shinohara 2001]
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outline

• expected EP transport in ITER

• role of DTT 

• available and emerging new tools  
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[A. R. POLEVOI ET AL. J. Plasma Fusion Res., 5 (2002)]
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presently these calculations are updated: new baseline, heating mix, density peaking? W transport?
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qualitatively new situation 
compared to present-day 
experiments: 

cluster of most unstable 
modes15<n<25 

may destabilise 
subdominant modes with 
lower n in outer coreregion of steepest 

α-gradient

damping  > ~1%
various TAE branches
with same n

expectations for ITER 15MA

recently confirmed
by JET experiments
[M. Fitzgerald, 2023]
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ITER, 15MA ‘standard scenario’

‘sea’ of weakly unstable TAEs 
expected with small EP 

transport;
agreement with diffusive/quasi-

linear estimates

weak radial EP
redistribution;
agreement with QL model

HAGIS/LIGKA model, ITER 15 MA TAEs [Schneller, 2015]
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EP

 d
en

si
ty

 

expectations for ITER 15MA



20.2.2024 DTT Science Meeting 8

most unstable 
toroidal mode numbers: 

HAGIS/LIGKA model, ITER 15 MA TAEs [Schneller, 2015]

expectations for ITER 15MA : scale nEP by 2

•also found in reduced descriptions: 1d beam plasma model [Carlevaro, 2015-17,2021]
•above simulations do not consider wave-wave non-linearities 
•collisions influence saturation level [Slaby 2019]

avalanche found, unacceptable EP transport
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•compare LIGKA/HAGIS model to ORB5: global electromagnetic gyrokinetic code using the PIC approach 
in toroidal geometry [Lanti CPC 2020, for EP physics: Biancalani, Bottino, Hayward-Schneider, Vannini,… 2012-21]

•Effectively mitigates with the so-called cancellation problem using the pullback scheme (leads to an order 
of magn. increase of time step) [Mishchenko CPC 2019]

•very similar linear and non-linear properties of ITER 15 MA case were found  [T Hayward-Schneider 2021, AAPPS-
DPP 2020]

most unstable 
toroidal mode numbers: 

HAGIS/LIGKA model, ITER 15 MA TAEs [Schneller, 2015] ITER 15 MA case - ORB5   [T Hayward-Schneider NF 2021]

expectations for ITER 15MA : scale nEP by 2
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Expectation for a pure diffusive model:
trajectories - measured with δs=s(τ-δτ)-s(τ) - defined by       
random walk 
PDF expected to be a normal distribution 

what kind of EP transport?

• can we describe the  previously studied ITER 15MA case 
with a diffusive model? [part of ENR ATEP scope]

• using test particle analysis for analysing global transport 
properties in reduced 1d bump-on tail model

• determined diffusive (τ) vs. convective (τ2) scalings
• different behaviour of high-n TAE and low-n TAE branch!

BUT:  asymmetry of the PDF:
Non diffusive transport!

diffusive scenario

ITER scenario
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• Lagrangian Coherent Structures: most repulsive or attractive material lines (transport barriers).

• Early times show diffusive behaviour at high-n TAE locations

• Late times show avalanche-like behaviour at low-n branch

[N. Carlevaro et al, to be submitted]

high-n low-n

mode amplitudes of
TAE spectrum

what kind of EP transport?
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needed for scaling from TCV-AUG-JET, W7X…   to JT-60SA-DTT-ITER-DEMO, in particular burning plasmas

4. self-organisation - back reaction of 

EP transport on profiles and 

background transport

3. EP transport and losses

2. non-linear mode evolution, 

saturation mechanisms

1. mode stability 
linear global kinetic e.m.

non-linear global kinetic e.m.

non-linear/quasi-linear global kinetic e.m. + long 
time scales (source +sink)

required models:

non-linear/quasi-linear global kinetic e.m.+ background transport;
allow significant deviations from neoclassical equilibrium

ingredients for reduced energetic particle (EP) transport models:
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• in ITER/DEMO, core TAEs can be weakly unstable; edge TAEs are  weakly damped and can be driven non-linearly [Pinches, 
Lauber, Schneller  2014/2015, T Hayward 2019, ORB5]

• let us assume that EPs stabilise background turbulence under ITER/DEMO conditions [Mantica, Citrin et al, 2007-2024] when 
βthermal and βEP start to increase during ramp-up; or also density peaking increases reactivity

• TD,T profiles will be more peaked than in [Polevoi 2002]    - need to understand exact conditions and time scales for peaking

• peaked TD,T profiles will lead to increased reactivity ~T2 (or density peaking)

• α particle profiles will also peak until significant EP transport sets in (large slowing-down time scales!)

• the nature of this transport determines how large the ‚overshoot‘ will be - diffusive in the core but large enough to trigger 
avalanche as in ITER example? ( factor 2 in ∇nα/nα )

• flattened EP profile will negatively impact the EP stabilisation mechanism - additional Ti flattening might set in

• note that this ‚limit cycle oscillation‘ comprises collisional, transport and EP-transport times - large time scale separation

• in order to avoid large overshoots, mitigation for EP-generated transport barriers may be needed (see ELMs)

aspects of self-organisation in a fusion plasma
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• current profile:  tailor q-profile in order to ensure TAE resonance overlap to stay in 
diffusive transport regime (difficult under reactor conditions)

• sawtoothing: control sawtooth crashes to tailor energetic α’s and He-ash 

• D-T fuelling: control D:T mix;  higher D fraction increases ion Landau damping of TAEs; 
higher T fraction decreases ion LD

• impurities ‚destabilise' AEs and thus may prevent overshoots (central ECRH heating)

possible control mechanisms

[Bierwage Nat.Comm 2022]
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role of DTT for burning plasma physics

DTT:
16MW ECH
 4MW  ICH
10MW NNBI (~500keV)

BT= 6T
Ip=5.5 MA
R=2.2m
a=0.7m 

JT-60SA:  
7MW ECH
10MW NNBI (~500keV)
24MW PNBI

BT= 2.25T
Ip=5.5 MA
R=2.96m
a=1.18m

key opportunity for EP studies: 
flexibility of operating at different currents and fields while keeping high heating power [RP, chapter 4] 
more space for diagnostics (less PNBI ports)? 
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role of DTT for burning plasma physics
• scan unstable AE mode number spectrum - larger capability than other machines, including super-Alfvénic resonances 

(DTT n~17, ITER n~25; FOW effects - linear physics)

• study overlapping conditions of AEs and characterise nature of transport: as normalised parameters match burning 
plasmas [chapter 7], this will give indications on EP losses (core-edge integration, linear - quasi-linear/non-linear 
hybrid)

• study steady-state / chirping transitions, as transport increases significantly when AEs are chirping (non-linear) [X. 
Wang 2022]

• interaction of EPs with turbulence: wide scan over β-range and EP-distribution function properties (non-linear/ multi-
scale) [Di Siena et al, 2021]

•  fusion mock-up experiments: as β and Ti increase  (using NNBI + ECRH) - add ICRH to mimic additional drive due 
to increased reactivity (non-linear/ multi-scale/ neoclassical coupling)

• use current profile and/or impurity control to influence AE stability - exploit W wall and similarity scaling (non-linear/ 
multi-scale/ neoclassical coupling + control )

• use light impurities to mimic dilution and/or D:T mix scalings 
(non-linear/ multi-scale/ neoclassical coupling + control)

• use comprehensive diagnostics to measure non-linear zonal state (in particular phase space distortions)

[Du, PRL 2022]
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available and emerging new theories/tools   

requirements:

• validation and verification for reactor relevant physics 
• special role of EPs and phase space
• able to be eventually integrated in transport codes - aim for IMAS compatibility
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[M.V. Falessi et al, EPS 2023,   invited talk]
[M.V. Falessi et al, EFTC 2023, invited talk]
[M.V. Falessi et al, IAEA FEC 2023]
[M.V. Falessi et al, NJP 25 123035 2023]

PSZS theoretical framework

Self-consistent description of EPM repeated burst dynamics using the PSZS theoretical framework

• comprehensive PSZS transport theory: include zonal fields as e.m. counterpart of 
phase space zonal structures - complete description of nonlinear equilibrium

• nonlinear equilibrium connected to (anisotropic) CGL description 
• application of theory to EGAMs - explicit equations for non-linear chirping dynamics - 

ready for comparison with simulations

[F. Zonca et al, IAEA FEC 2023]
[F. Zonca et al,  AAPPS-DPP 2023]

+ 3D version of PSZS equation [A. Zocco et al, 2023]+beat-driven vs spontaneous excitation of ZFs [Chen/Zonca/Qiu, 2024]
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transport code
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EP stability workflow, based on linear GK code LIGKA

•automate analysis of stable/unstable Alfvén eigenmodes:
•for many equilibrium time slices
•for many relevant toroidal mode number (Tokamak only, axisymmetry)
•relevant types of modes

•use hierarchy: 
•start with simple, analytical model
•use local model
•use global model

•understand physics and numerical challenges: 
•determine (kinetic) continuous spectra
•investigate local vs global damping mechanisms
•determine resolution requirements for expensive runs

•determine sensitivity of AEs: look at series of equilibria, include uncertainties 
• be general: use IMAS mhd_linear IDS to store results - each model is exchangeable  (e.g. 

spectrum: LIGKA or Falcon)
• be fast: use reduced models where possible
• be robust enough to use it as fundamental ingredient for transport models

[Ph. Lauber,  
V.-A. Popa, 
T. Hayward-Schneider+ 
ITER support ]
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EP stability WF: design criteria

•automate analysis of stable/unstable Alfvén eigenmodes:
•for many equilibrium time slices
•for many relevant toroidal mode number (Tokamak only, axisymmetry)
•relevant types of modes

•use hierarchy: 
•start with simple, analytical model
•use local model
•use global model

•understand physics and numerical challenges: 
•determine (kinetic) continuous spectra
•investigate local vs global damping mechanisms
•determine resolution requirements for expensive runs

•determine sensitivity of AEs: look at series of equilibria, include uncertainties 
• be general: use IMAS mhd_linear IDS to store results - each model is exchangeable  (e.g. 

spectrum: LIGKA or Falcon)
• be fast: use reduced models where possible
• be robust enough to use it as fundamental ingredient for transport models

modules available on gateway/ ITER cluster 
see training course (July 2023)

https://indico.euro-fusion.org/event/2729/
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• analyse L-mode,H-mode and transition phases:  
beat infamous problem of AE stability sensitivity to profiles 
- compare trends instead of single time slices 
• compare local and global models 
• systematic uncertainty quantification feasible 
• applied also to TCV, JET, JT-60SA, ITER

L-mode H-mode

n=2 TAE
integrated data analysis +

TRVIEW(IMAS interface) 


+

EP-WF: LIGKA  local 


+

EP-WF: LIGKA  global    

to
r. 

m
od

e 
nu

m
be

r • automated processing of 160 time slices based on IDA 
equilibria and profiles 

• fully implemented in IMAS, ensuring reproducibility 

[s] [s]

[Lauber, EPS 2022, Popa 2020-2023]

application: present-day experiments
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δFEP = FEP(t = 700ms)−FEP(t = 0)[1016m−3] with constant δB(t)/B) = 10−5

integrated  
over Λ

integrated  
over PΦ

 ATEP code - kick model limit
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  ATEP code - energy conserving QL model

amplitude dependent  <dPΦ/dt>, <dE/dt> needed!

PΦ Λ

different
δB/B

<dPΦ/dt>
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ATEP code: back-mapping to configuration space

return non-linear EP density, current, pressure to transport code
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 new neoclassical building block for ATEP 3D [G Meng, Ph. Lauber, submitted NF 2024]

compare to SPOT [M. Schneider]: reasonable agreement

presently merging wave-induced and collisional part

• use collision operator in HAGIS code [A. Bergmann,  PoP 2001]
• calculate orbit averaged collision-coefficients in CoM space
• separate co- and counter-passing regions, use IMAS-given n,T profiles
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• together with TSVV10: non-linear benchmark for NLED AUG case has been carried out              
[G. Vlad, IAEA FEC 2023, submitted NF] - important benchmark for ATEP code suite.

• note large instability-induced EP transport, deviating substantially from neoclassical values

MHD-kinetic hybrid models deliver benchmarks for reduced models
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n=0n=5 n=5

With Zonal Flow Without Zonal Flow

n=2n=5 n=4 n=3 n=5 n=4

Fully self-consistent global ORB5 simulations in presence of EPs and turbulence

• keep n=[0-40], high-n fluctuation driven by thermal background can develop, EPs drive  n=2-5 TAE/EPMs 
• result: zonal flows strongly influence the chirping behaviour - typically preventing chirping; turbulence level less important 
• in the future: aim for connection to theoretical nonlinear theories and provide input for reduced models 

[X Wang, ITPA 2022]
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• comparison of PSZS between ATEP and ORB5: n=19 TAE ITER #101006  (ongoing) 

ORB5: slowing down 
 n=18+19 case, linear phase

comparison of reduced models with ORB5

ATEP: phase space fluxes 
 n=18+19 case 
hot Maxwellian

ORB5 vs ATEP 

• remaining differences: non-perturbative modes in flat-shear scenario 
• very challenging, but promising start for comprehensive quantitative match!
• PSZS about to become ‚gold- standard‘ for comparison of non-linear runs and reduced models
• comparing moments will remain important, but not sufficient for qualifying simulation results

[T Hayward-Schneider, A. Bottino; TSVV-10]
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comprehensive AE + ZF studies + turbulence  (ORB5/TSVV10)
here: JET case [J. N. Sama,  submitted to J. Plasma Phys. (2024)]

EP Stability WF: TAE+ ZFZF 
using analytical theory [Qiu, NF 2017]
ITER case

ORB5 studies of TAE-induced ZF - starting to include ZFs in reduced models

• stabilising influence of ZF on ITG spectrum demonstrated
• reasonably large TAE amplitude required for stabilisation
• PSZS diagnostics available as a standard diagnostics in ORB5

building on successful comparison of theory with
GTC fishbone simulations [Brochard, accepted 2023]

TAEZFZF
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summary

• DTT can address very specific and relevant questions concerning burning plasma 
physics

• core-edge integration as main focus of the machine open opportunities for burn-
control studies (impurity control, EP transport control)

• DTT is important opportunity for the validation and verification of reactor relevant 
physics - special role of EPs and phase space 

• developing theories and tools for reduced modelling need to be integrated in 
transport codes


