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Introduction
In addition to increasingly realistic non-linear global simulations [1, 2, 3, 4, 5, 6], a hierarchy of

theory-based reduced models is needed to complement the predictions concerning the performance of
future burning plasmas. Large parameter scans, sensitivity studies and multi-scale physics connecting
energetic particle transport with neoclassical transport time scales require tools that go beyond what
is presently feasible with first-principles numerical codes. In the view of this challenge we report in
this work on the construction, validation and application of reduced energetic particle (EP) transport
models pursued within the framework of the EUROFusion enabling research project ATEP (Advanced
Transport models for EPs).
Model equations

The general theoretical framework introduces the concept of long-lived toroidally symmetric struc-
tures in the particle phase space (phase space zonal structures, PSZS) that are separated from fast
fluctuating contributions [7, 8, 9, 10]. Comprehensive transport equations have been derived that are
designed to capture the evolution of PSZSs on collisional transport time scales while keeping the
important non-linear interactions in a consistent multi-scale description. The model captures physics
beyond simpler models (critical gradient [11], kick model [12], quasi-linear [13]) that, however, can
be recovered in the appropriate limits. Details and an application example for zero-frequency zonal
flow generation by geodesic acoustic modes can be found in [9, 10] (at this conference). The exten-
sion to 3D geometry has been started [14].
The newly developed ATEP code is based on this PSZS transport formulation. Although in its first
stages it will not comprise the full non-linear phenomenology contained in the theoretical model,
its formulation and implementation are designed to capture non-linear effects in a systematic and
transparent way. In its simplest limit without sources, sinks and collisions, the transport equation is
formulated as a continuity (advection) equation of the EP distribution function Fz in constants of
motion (CoM) phase space (Pφ ,E,Λ) [15]:
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Here, Pφ is the canonical toroidal momentum, E the energy and Λ = µB0/E and µ the adia-
batically invariant magnetic momentum. 〈〉 indicates orbit and phase (between particles and wave)
averaging. (Note that notations and definitions deviate slightly from ref. [9]). If the initial Fz is as-
sumed to be an equilibrium state described in CoM coordinates, it will remain a zonal state (i.e.



independent of any poloidal or toroidal angle) since the phase space flow induced by the flow velocity

vPφ ,E = (〈dPφ

dt 〉,〈
dE
dt 〉) is orbit averaged. If dissipative effects are neglected the flow is incompressible

and ∇ ·vPφ ,E = 0.
Within the kick-model limit we assume that vPφ ,E is determined by a (low frequency) fluctuation spec-
trum with fixed amplitudes, e.g. provided by experimental measurements, comprehensive code results
or a theoretical closure model. That leads to a 2D advection equation with constant advection velocity
vPφ ,E . Evolving eqn. (1) corresponds to a forced-driven system, where the externally given advection
velocities flatten (or also steepen) the phase space gradients. If a physical, linearly unstable mode with
fixed amplitude (i.e. a prescribed δB/B) is chosen to determine vPφ ,E , phase space (particle) density is
flowing proportional to the derivatives of Fz across the phase space volume elements. Clearly, phase
space density is conserved, but within the kick-model the total energy E (t) =

∫
dvPφ ,E,ΛE ·FEP(t)

is not conserved. Monitoring the change in total energy allows one to determine if the perturbations
have exhausted the free energy available by flattening Fz, or if the perturbation is starting to pile up
energy in an unphysical way. dFz/dE = 0 determines the relaxed state of Fz within this model.
Clearly, for a steady-state solution, one needs to balance this relaxation with sources and sinks. The
required neoclassical physics elements have been added to eqn. (1) and first promising results, using
a bounce averaged collision operator in the same CoM formulation and code framework are reported
in ref. [16] (at this conference).
In order to construct a quasi-linear model, an energy balance between wave amplitude spectrum and
phase space flows has to be introduced [15]:
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Here, ∑k Wk is the total wave energy as a superposition k linear eigenmodes, and γd,k their respective
damping rates. Once the change of E has been calculated for an initial (small) wave spectrum am-
plitude δB0/B via vPφ ,E(δB0/B), the new wave energy can be determined, leading to dynamically

changing vPφ ,E(δB(t)/B). This requires to know how (〈dPφ

dt 〉,〈
dE
dt 〉) behave as a function of the per-

turbation amplitude. This system by construction conserves phase space density and total energy, if
mode damping is ignored or properly accounted for in the energy balance. If the wave spectrum is not
allowed to change its shape, i.e. if non-linear mode structure modifications are ignored, the model is
similar to the HAGIS model [21], at least in the limit when only one perturbation is considered. For a
multi-mode system, the relative amplitude change between different modes is ignored so far, however,
this is in line with a quasi-linear model where mode saturation amplitude and effective linear growth
rates are directly correlated. It should be remarked, that whereas eqn. 1 deals explicitly with fluxes in
CoM space, the equation can also be cast as an advection-diffusion equation in the quasi-linear limit
[17]. By determining the autocorrelation time τac (note that the resonance conditions for all CoM
positions and the damping/growth rates for the perturbations are known) the diffusion coefficients

can be readily calculated: DPφ ,Pφ
= 〈dPφ

dt 〉
2 · τac, and similar for the energy and mixed diffusion tensor

elements. As the particle database contains also all mappings from Pφ to various orbit averaged radial
coordinates (R, pol. flux, tor. flux), the diffusion coefficients can be transformed to m2/s units.
Implementation

The newly written ATEP code is technically closely interlinked with well-established IMAS (In-
tegrated Modelling and Analysis Suite) framework and its data structures [18]. It profits in design
and modularity from the recently established EP-Stability workflow (WF) that is used in this paper
to calculate the linear mode spectrum [19]. The interfaces between the different codes employ IMAS
data structures, meaning that all operations needed to set up the ingredients for the PSZS evolution
equations are in principle replaceable by equivalent codes or models.
Using the linear gyrokinetic mode information (radial structure, frequency, damping/growth rate) as



Figure 1: Ensemble of particles with different toroidal phases (different colors) with respect to an
n = 13 TAE at fixed amplitude (δB/B = 5 · 10−4) representing one point in CoM space: on the left
(Pφ =−0.015, E = 200keV, Λ = 0.0017) the passing particles are non-resonant, the average ∆Pφ =
Pφ ,t −Pφ ,start is vanishing. On the right (Pφ = −0.015, E = 200keV, Λ = 0.84) the barely passing
particles are resonant. For not too large perturbations, ∆Pφ initially grows proportional to the number
of transits, at later times the particles have been ’transported’ and remain at their final position. For
typical parameters δB/B < 1...5 · 10−3 averaging over 5 orbits leads to accurate and reasonably
fast results for 〈∆Pφ/dt〉. The phase averaged Pφ is plotted as well (full dots). Note that Pφ here is
normalised to Zeψ with ψ the poloidal magnetic flux at the last closed flux surface.

given by the LIGKA code[20] embedded in the EP-Stability WF, the well-established HAGIS code
[21] is employed to calculate the response 〈dPφ/dt〉 and 〈dE/dt〉 for a set of pre-selected sample
markers for different perturbation amplitudes. First, a set of markers covering the whole CoM space,
including co- and counter-passing particles is generated by a code wrapper called ’finder’ with a pre-
scribed grid CoM resolution (128x40x40 in this paper). The grids are refined close to the trapped
passing boundary, and all orbits properties such as topological status, transit time, averaged preces-
sion drift and average radial position are determined by following all particles for one orbit in the
equilibrium configuration. After that a perturbation (or set of perturbations) is added at a fixed ampli-
tude δB/B, and the markers are followed for N = 5−10 orbits (see fig. 1). In addition, each marker
in CoM space is replaced by 10-20 identical markers that are started with a different phase in the
toroidal angle 2π/ntor, where ntor is the toroidal mode number of the perturbation. For a multi-mode
case the lowest toroidal mode number is typically used, or a random phase seed can be chosen. This
procedure is a very effective zonal and orbit average procedure, since now 〈dPφ/dt〉 for each marker
can be recorded, and averaged over N orbit transits (as the individual transit times are known) and
all toroidal angles. At the same time also 〈dE/dt〉 is calculated. As expected a linear relation be-
tween 〈dPφ/dt〉 and 〈dE/dt〉 is found due to the conservation properties of the wave-particle system.
This averaging procedure removes the ntor-dependent part of the particle response, as described in
the theoretical framework. It should be noted that the dynamics of strongly unstable perturbations
with ballistic transport (i.e. particles remain only a fraction of their individual orbits in the perturba-
tions’ potential) is not properly captured. However, as we aim to construct a transport model for long
time scales, this type of physics is ignored for now. In order to quantify the simplifications related to
this procedure, a connection to detailed analyses of transport scaling laws (diffusive/convective) for
both Alfvénic gap and energetic particle modes using Lagrangian coherent structures is in progress
[22, 23]. The ’finder’ tool is also used to calculate orbit-averaged collision coefficients, using the col-
lisional version of the HAGIS code [16, 24].
The calculated transport coefficients can be projected onto the final 3D CoM grid used in the ATEP
code (typically 64 to 96 grid points per Pφ ,E,Λ and mode amplitude, but higher resolutions are pos-
sible). A multi-level spline interpolation algorithm [25] is used in order to set up vPφ ,E(δB/B) from



the somewhat scattered (loss boundaries, refinement at trapped passing boundary) HAGIS data on the
regular CoM grid. The results are shown in fig. 2 where co and counter-passing CoM grids have been
separated [26], however the trapped grid is kept for both cases in order to ensure smooth splining
across topological boundaries. Main and higher-order resonances can be seen, showing the phase-
space dependent transport properties of a resonant toroidal Alfvén eigenmode (TAE) perturbation.
Obviously, any projection to a lower dimensional transport coefficient would neglect energy and pitch
angle dependencies that turn out to be especially important for the calculation of zonal currents.

Figure 2: 〈dPφ/dt〉 for a single n = 13 TAE with δB/B = 5 · 10−6 as a function of the CoM space
for different slices: left top: co-passing and trapped particles, right top: counter-passing and trapped
particles for E = 500keV. Bottom left: E-Λ plane with Λ = µB0/E for Pφ =−0.2; bottom right: Pφ -
E plane for Λ = 0.12 (deeply passing particles). Blue/red colors refer to outward/inward transport
(negative/positive Pφ direction). Note that Pφ is normalised to Zeψ with ψ the poloidal magnetic flux
at the last closed flux surface.

In this paper we use the METIS generated ITER pre-fusion scenario simulation #100015/1, and a
set of TAE modes with toroidal mode numbers ntor = 13,14,15. For this simulation three different
neutral beam generated EP distribution functions (hydrogen) as calculated by the NEMO/SPOT WF
[27] are available: one with both beams on-axis, one with both beams off-axis and a mixed on-off-
axis case. The NEMO/SPOT results are stored as set of markers in the IDS distribution, containing
the complete set of spatial and velocity coordinates, together with the canonical CoM coordinates and
the marker weights. Clearly, any other code giving the same information can be readily used as input.
The marker data is imported into the ATEP code similarly to the vPφ ,E(δB/B) data. Depending on
the marker resolution, binning, smoothing and splining of this original FEP is required. Obviously,
there is some arbitrariness in this process. Here, we first bin the markers into the regular CoM grid
described above, and then construct a 2D spline in each of the sub-spaces (Pφ ,E) , (Pφ ,Λ) and (E,Λ).
Individual smoothing can be applied for each of the sub-grids. Then, a 3D spline is constructed and
the derivatives with respect to Pφ and E are determined. The result can be seen in fig 3.
After these preparation steps eqn. 1 can be evolved in time. Being a ’simple’ advection (diffusion)

problem, standard methods in the literature can be used. So far we employ an explicit 2nd order
Lax-Wendroff-scheme with automatic time step adoption (Courant-limit check) and a Matlab based



Figure 3: Distribution function of energetic hydrogen particles, #100015/1, in ITER’s off-off-axis
beam configuration. The original marker data as calculated by the NEMO/SPOT package was binned,
smoothed, splined and projected onto the regular CoM grid of the ATEP code (slice with Λ = 0.5)

implicit Crank–Nicolson solver for testing. A final choice of the solver (including parallelisation and
performance optimisation) will be made at a later time.
The preparation of the input for ATEP requires moderate computational effort: depending on the
model, the runtime for EP-Stability WF is a couple of seconds to a few minutes [19]. Preparing the
orbit- and zonally-averaged data requires typically 15 minutes on 32 cores (ITER SDCC cluster).
Although this step is already parallelised it can be further optimised and accelerated in the future.
Reading, binning and splining requires about 30 seconds (depending on the CoM grid). Finally, trans-
port steps are quite fast, however the Courant criterion for the explicit solver may require small time
steps. The implicit solver [16] resolves this problem, but still needs parallelisation for larger CoM
grids. The time-advanced FEP on the CoM grid is remapped into the marker-space via updating the
individual weights of markers belonging to a certain CoM position according to the change of phase
space density at that position. It becomes obvious, that the markers themselves are not transported,
just their weights are evolved according to the PSZS fluxes. Then, standard averages and moments
can be taken to determine density, current and pressure in physical units. This information (or the EP
diffusion coefficients discussed above) can be passed to a comprehensive transport code. In summary,
all ingredients for solving the PSZS transport equation and its interfaces to other transport codes have
been established. For details on the collisional part please refer to ref. [16].

First results
As in fig. 2 we use the even n = 13 TAE at various fixed amplitudes to evolve the system, i.e. eqn

1. At each time step, the energy of FEP is determined via integrating over CoM space and normalising
to the initial energy E0: E (t) =

∫
dvPφ ,E,ΛE ·FEP(t)/E0. Density conservation is enforced, as in this

case no outflux from the CoM grid is allowed. So far, the term Fz
∂

∂Pφ
〈dPφ

dt 〉 in eqn. 1 is omitted (similar
for the E-term), assuming that it is negligible in the kick-model limit. Losses and transport to thermal
energies (the energy boundary was set to 50 keV) are ignored so far. As one can see in plot 4, the total
energy stored in FEP is decreasing due to the PSZS fluxes. That means that the perturbation is able to
extract energy from the gradient of FEP, as it is expected for an unstable TAE. Note, that for perturba-
tions that are not consistently chosen as unstable eigenmodes of the system, the total energy can also
increase, meaning that the perturbations increase E (t). In this example E (t) decreases linearly in the
first phase, its linear ’damping’ rate being proportional to the applied δB/B. Plotting the same data
1−E (t) on a log t scale shows how the same amount of energy is extracted on very different time
scales for different δB/B . As the perturbation amplitude is held fixed, at some point the free energy is
exhausted, and the total energy reaches a minium. As δB/B0 remains fixed in the kick model limit and
damping is ignored, the phase space density is further ’advected’. This requires energy, and thus the



Figure 4: Linear (left) and logarithmic (right) time evolution of the normalised total energy∫
dvPφ ,E,ΛE ·FEP(t)/E0 using the kick model limit for #100015/1, in ITER’s off-off-axis beam config-

uration for a fixed TAE with different amplitudes.

Figure 5: Left: the PSZS state δFEP = FEP(t = 700ms)−FEP(t = 0)[1016m−3] for #100015/1 (off-off-
axis beam configuration) in the kick model limit with δB(t)/B) = 10−5 in (Pφ ,E) plane, integrated
over Λ ; right: δFEP[1016m−3] in (E,Λ) plane integrated over Pφ . Here, FEP as shown in fig. 3 was
used.

total energy starts to increase again. Including sources and collisions [16] balancing the EP transport
will lead to consistent saturation levels. We can use the minimum in E (t) to define a maximally re-
laxed state. In fig. 5 such a relaxed zonal state δFEP = FEP(t)−FEP(t = 0)[1016m−3] is plotted in two
different projections. One can see that - as expected - the transport is mainly radially outwards (nega-
tive Pφ being outwards). Also, high-energy phase space density is reduced and lower-energy regions
more strongly populated. This illustrates how different CoM regions of the beam FEP drive and damp
the perturbation, i.e. how EP energy is channeled on average via Landau damping to low-energy re-
gions (α-channeling [28]). Projecting FEP from the CoM grid back to real space and taking moments
allows us to determine the zonal density and the zonal current that represent the radial transport of EP
density and current, as plotted in fig. 6. One can see how FEP is relaxed, i.e. the gradients flattened
and EP density and current are transported radially outwards, as theoretically expected. Clearly, this
information can be used to construct a new non-linear equilibrium, and by using a sensible iteration
scheme, the ATEP code can be cast into to a reduced EP transport model. As described above, this
model can be improved by evolving the wave energy consistently with the change of E (t). To this
end, a set of vPφ ,E(δB/B) for δB/B) = [10−6,10−5,10−4,10−3] is prepared as described above. A 4D
spline (3 CoM coordinates and δB/B) is constructed. Whereas the amplitude dependence is simple
for a single mode (essentially the orbit width of the EPs determine the volume of CoM space that is
affected by the spatially fixed perturbation), resonance overlap criteria for multi-mode cases can be
accurately taken into account by this procedure (details not shown here). Using the fact that the wave



Figure 6: Left: Radial projection (ρtor) of the distribution function of energetic hydrogen particles,
#100015/1, in ITER’s off-off-axis beam configuration, initial (as given by NEMO/SPOT) and final
state after evolving the PSZS transport equation for 700ms (1000 time steps) in the kick model limit
with δB(t)/B) = 10−5; right: the initial and final EP-current for the same case. The inlets in both
plots show the difference of the final and the initial state.

energy is ∼ (δB/B)2, one can map the change of E for a small initial perturbation to (δB(t)/B)2,
leading to a stronger initial growth of the perturbation until a saturated δBmax/B is reached (see fig.
7). Since no damping is included so far, the mode decays only very slowly due to the growing imbal-
ance of beam damping and drive. Including realistic background damping rates will allow us to reach
reasonable saturation amplitudes, in line with the nonlinear wave-particle interaction model imple-
mented in HAGIS.

Figure 7: Left: For the same case as shown in fig. 5: mapping back the PSZS to marker space shows
that the transport equation indeed introduces a zonal density perturbation to FEP, here represented
as the change of marker weights [%] (color bar). For this plot only the most resonant particles with
E > 500keV and Λ < 0.3 were chosen. Right: the normalised wave energy Ewave(t)/E0 and δB(t)/B
are allowed to evolve dynamically according to the energy balance eqn. 2. After an initial growth
phase, saturation and a starting decay is observed.

Conclusions and outlook
After these first encouraging results, a thorough validation effort will be carried out, profiting from

ongoing work within the Eurofusion Enabling Research Project ’ATEP’. To that end comparisons
with other reduced models will be carried out, e.g. with an ongoing extension of the DAEPS code



[29, 30, 9] that uses explicit analytical expressions for calculating the phase space fluxes. Also a 1d
reduced model based on the beam-plasma bump-on-tail paradigm that is designed to go beyond the
quasi-linear approximation and thus forecast possible EP transport transitions such as avalanching[22]
will be used to determine the limits of the ATEP model. As mentioned above, its formulation allows
one to carry out detailed analysis of transport scaling laws (diffusive/non-diffusive) using Lagrangian
coherent structures (LCS) [22, 23]. Further verification and validation is being carried out using com-
prehensive numerical codes in the appropriate limits (HYMAGYC, (X)HMGC, STRUPHY, ORB5,
HAGIS/LIGKA; for a recent benchmark of these codes refer to ref. [4, 31]). To that end, the imple-
mentation of PSZS diagnostics in the various codes [32, 33] provides a natural connection point for
detailed comparisons. In addition, the Hamiltionian mapping method, as pioneered within the HMGC
code, gives further valuable insight into trapping/detrapping processes in single and multi mode sys-
tems [32, 34] building on the same LCS methods developed for the 1d beam-plasma model. A new
hybrid MHD-kinetic model (STRUPHY) has been developed and implemented [35] as part of the
ATEP project. It follows a stringent mathematical formulation using the exterior calculus framework
leading to improved non-linear stability behaviour as needed for transport time scale simulations.
After validation the ATEP model will be extended to include non-linear interactions via direct and
in-direct (i.e. mediated by ZS) coupling mechanisms as described in refs. [7, 8, 9, 10]. Several time-
dependent scenarios from present-day and future experiments (particularly AUG, JT-60SA, TCV,
DTT, JET, ITER) have been already collected and ported into IMAS for validation and uncertainty
quantification. Motivated by the particular needs of the ATEP project for validation cases, dedicated
experiments at AUG have been designed and carried out. Building on previously developed scenarios
that maximise the ratio of EP vs. background pressure [36], strongly EP-driven mode activity and EP
transport in plasmas with different isotope mixes have been observed and are presently analysed.
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