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needed for scaling from TCV-AUG-JET,…   to JT-60SA-DTT-ITER-DEMO:

4. self-organisation - back reaction of 
EP transport on profiles and 
background transport

3. EP transport and losses

2. non-linear mode evolution, 
saturation mechanisms

1. mode stability 
linear global kinetic

non-linear global kinetic

non-linear/quasi-linear global kinetic + 
long time scales (source +sink)

required model:

non-linear/quasi-linear global kinetic + background 
transport

modelling hierarchy for plasmas with significant energetic particle pressure
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modelling hierarchy for plasmas with significant energetic particle pressure

needed for scaling from TCV-AUG-JET,…   to JT-60SA-DTT-ITER-DEMO:

linear global kinetic

non-linear global kinetic

non-linear/quasi-linear global kinetic + 
long time scales (source +sink)

non-linear/quasi-linear global kinetic + background 
transport

required model:

LIGKA/DAEPS

HAGIS

RABBIT

ETS 
TRANSP 
NUBEAM

ORB5 
EUTERPE 

CKA-EUTERPE

MHD 
hybrid

4.

3.

2.
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needed for scaling from TCV-AUG-JET,…   to JT-60SA-DTT-ITER-DEMO:

HAGIS

LIGKA/DAEPS

RABBIT

ETS 
TRANSP 
NUBEAM

ORB5 
EUTERPE 

CKA-EUTERPE

MHD 
hybrid

PSZS model 
ATEP 

aim: develop IMAS based tool to calculate 
electromagnetic, global EP transport and 

couple either via FEP or its moments to 
transport codes; 

different models of fidelity/cost 4.

3.

2.

1.

modelling hierarchy for plasmas with significant energetic particle pressure
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e.g. ETS:
[D. Coster et al IEEE TRANSACTIONS ON PLASMA 
SCIENCE, VOL. 38, 2010]

formulation of transport processes in available transport codes:
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• diffusion coefficients for impurity transport by background turbulence, no e.m. 
EP-driven modes [Angioni, Püschel, etc]

• critical gradient model [R. Waltz, E. Bass]: use local AE stability threshold, add 
upshift of transport threshold using (ExB)turb shearing rate; above threshold set 
DEP to ad hoc values [e.g. 10m2/s] to clamp EP’s radial gradient to critical value

• kick model [M. Podesta, 2014-2022]: calculate probability density function of 
kick in Pz and E for given amplitude

•RBQ model, 1D, 2D [N. Gorelenkov 2015-2022]: use resonance broadening 
QL theory connected to NOVA-K to evolve mode amplitude consistently with 
evolution of FEP

• PSZS model [M-V. Falessi, 2017-2021] - consistently embedded in general NL 
GK theory [see e.g. talk F. Zonca PPPL EP Seminar May 2022] 
gives clear guidance on validity and limitations of reduced models by 
monitoring simplification conditions

some existing transport models for EPs

[Podesta 2016]
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typical quasi-linear scheme:

initial FEP, 
amplitudes Φ 

mode structures

determine γ 
from FEP

evolve Φ calculate D 
from A

calculate FEP 
using D

BERK et al. 

In Section 2 we describe the physical self-consistent 
line broadened quasi-linear model. In Section 3 we dis- 
cuss the theory for the non-linear domino effect. In 
Section 4 we present preliminary numerical results for 
the bump-on-tail instability. In Section 5 we discuss 
how the method can in principle be extended to more 
complicated geometry. In Section 6 a brief conclusion 
is presented. 

2. LINE BROADENING MODEL 

It has been previously observed that the Alfvkn 
wave problem is mathematically similar to the one 
dimensional bump-on-tail problem. Here we consider 
the case where in both problems the wave spectrum 
is discrete. According to quasi-linear theory, diffusion 
only occurs for the particles that exactly fulfil the reso- 
nance condition. In the bump-on-tail problem the res- 
onance condition is On = wn - k n v  = 0, with wn the 
eigenfrequency for the nth mode (for the bump-on- 
tail problem we take wn = wpe electron plasma fre- 
quency). For a potential of the form 

the quasi-linear equation for the evolution of the dis- 
tribution function, f (v),  takes the form 

Here, Q  ̂ is a shorthand notation for the quasi-linear 
operator, t is time, e and m are the energetic parti- 
cle charge and mass, v is the energetic particle speed 
and the amplitude of the perturbed electrostatic 
potential. 

Associated with Eq. (1) is the wave evolution equa- 
tion, which, written as the evolution of wave momen- 
tum Wn, is of the form 

a - wn = 27, wn 
at 
where 

Ikn 4no12 wn = 
277 vn 

W n  
U, = - 

kn 

(3) 

(4) 

Note that Eqs (1)-(4) imply conservation of momen- 
tum, 

(5) 

with C a time independent constant. 
There is, however an intrinsic difficulty in solving 

Eqs (1) and (3) if one takes the expression for D ( v )  
in Eq. ( 2 )  literally. This is because the domain of the 
diffusion coefficient is 'over a point'. Consequently, as 
written, the distribution function can only relax in an 
infinitesimal interval. In reality the diffusion domain 
should have a width in U. In fact when a finite growth 
rate, -yn > 0, is taken into account, the diffusion coef- 
ficient is broadened as one finds 

In fact the quasi-linear coefficient is really best applica- 
ble when there may be waves that cause orbit stochas- 
ticity due to mode overlap. Only then is the diffu- 
sion coefficient independent of yn.  Other cases can- 
not be treated as rigorously. When we do not have 
orbit stochasticity, we seek a method that realistically 
models the conversion of particle momentum to wave 
momentum. The results of the model system we use 
can be benchmarked with rigorously derived simula- 
tion results to ascertain the system's accuracy. 

When we have steady waves, without orbit over- 
lap, it is well known that the mean distribution flat- 
tens around the resonant particle region over a width 
that is comparable to the separatrix width of the 
wave-particle interaction [15, 161. A rigorous solution 
requires accounting for the wave-particle phase in cal- 
culating the wave-particle interaction. However, one 
can hope to model the wave-particle interaction by 
assuming that particles roughly within the separatrix 
width can stochastically mix in phase space, but par- 
ticles outside the separatrix width move adiabatically 
with the wave and do not mix in phase space. For the 
bump-on-tail problem we take the nth electrostatic 
wave to be of the form 

$ n ( Z , t )  = 2l$nJsin(knx -writ) (7) 

For simplicity, we take $,, to be real and positive. A 
conserved quantity is the energy in the wave frame, 
which is given by 

Particles for which -2e4,, < E,  < 2e&, lie inside 
the phase space separatrix. Particles on the separatrix 
satisfy 
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until γ=0, gradients exhausted, or γL=γD 

add effective collisions, sources

+self consistent 
resonance broadening

kick model/ quasi-linear diffusion model

calculate kick 
matrix

kick model scheme:

initial FEP, prescribe 
amplitudes Φ, 

mode structures

calculate FEP 

 effective collisions, sources handled by collisional SD code
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phase space zonal structure transport theory [M.-V. Falessi, 2017-2021] 
[L. Chen JGR, 1999] 

use connection to QL GK equations to 
reconcile with QL transport theory, e.g. in 
[L. Chen JGR, 1999] 

start from NL GK equation, 
and derive evolution equation of 
toroidally symmetric component due to 
fluctuations and sources/collisions: 

splitting micro and meso/macro scales -  
describes evolution of non-linear equilibrium 
including long-lived n=0 structures from 
perturbations

mapping from Pz,E,μ space to real space:
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PSZSs have been extracted from HMGC and 
HYMAGYC MHD-kinetic hybrid codes
[S. Briguglio, G. Vlad et al 2019-2022]

implementation of PSZS in NL MHD-hybrid and GK codes

recently also in non-linear GK code ORB5
NLED AUG EPM/TAE [A. Bottino, ATEP seminar, 3/2022]
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core_transport

10

equilibrium
timemhd_linear

distributions
transport code

outline: ATEP framework 
EP transport workflow schematics

calculate 
linear mode 
spectrum 

calculate PSZS 
with prescribed 

amplitude

calculate 
D(r,E) 

equivalent  
to kick model or

shortcut: 
critical  

gradient model 
with ad hoc D, 

local limit

advance 
FEP 

and return 
updated 

distribution IDS, 
or its moments 
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equilibrium
timemhd_linear

distributions
transport code

calculate 
linear mode 
spectrum 

calculate PSZS 

calculate 
D(r,E) 

equivalent  
to 2D RBQ model

advance 
FEP 

and return 
updated 

distribution IDS, 
or its moments 

or

use  
 NL code/model 

for intensity closure

t t+1

EP transport workflow schematics
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equilibrium
timemhd_linear

distributions
transport code

calculate 
linear mode 
spectrum 

calculate PSZS 

calculate 
D(r,E) 

advance 
FEP 

and return 
updated 

distribution IDS, 
or its moments 

or

use  
 NL code/model 

for intensity closure

t t+1

EP transport workflow schematics

EP WF (LIGKA) [A . Popa, Ph. Lauber]

[HAGIS, S.D. Pinches, T Hayward-Schneider]
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ATEP code [Ph. Lauber, 2022]

FINDER/HAGIS [Ph. Lauber, 2007,2022]
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calculating PSZSs 
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• distributions IDS holds all orbit-averaged information about marker space
• fast, repetitive calls of HAGIS library within IMAS are possible -  mapping between Pz and <radial position>!
• extended IDS structures were needed,  MDS+ limitations (2GB) avoided by moving to HDF5 backend

rho_pol can. tor. momentum

Λ=μB/EΛ=μB/E

color: co, cp, trapped, potatoes

calculating PSZS using FINDER/HAGIS

• use LIGKA related code FINDER to set up marker space, determine trapped-passing boundary, sort, classify, orbit averages for unperturbed equilibria
• originally developed to calculate propagator integrals for LIGKA
• now updated and ported to IMAS
• add perturbation, as originally implemented in HAGIS model [S.D. Pinches 1998]

[A. Bierwage, CPC 2022, LIGKA orbit integrals, CPC 2007]

co

cp

tr

potato

stagnation

co

cp

tr

potato

stagnation
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mid-radius, 1 MeV, He, co-passing, Λ=0, n=9 TAE with dB/B=10-3 

colours: different starting phase, 10 markers with 
starting tor. angle  [0: 2π/n]

important:  averaging over phase is crucial to obtain 
correct fluxes

adding LIGKA calculated perturbation: follow set of market for wave-periods, time or number of orbits

calculating PSZS using FINDER/HAGIS

LIGKA mode structure
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1 MeV, He, trapped, Λ=1.03, n=9 TAE with dB/B=10-3 

averaging over markers with different phase gives 
effective poloidally and toroidally averaged dPz

calculating PSZS using FINDER/HAGIS
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what is dPz, dE, dΛ for given perturbation after x completed orbits?

• arrows: initial (Pz,Λ) → (Pz+δPz,Λ+δΛ) 
• color: δPz
• averages over 10 phases, 64 orbits
• 2-5 minutes to calculate 
•modular structure of FINDER allows to 
replace HAGIS with newer/faster code of 
same functionality
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color: dPz/dt color: dPz/dt

calculate fluxes: dPz/dt [(eV/s)/s]

zoom

•divide δPz by orbit transit time and number of orbits (here 32)
• the same information is available for Λ and E
• transport coefficients DPz=(dPz)2/dt and KPz=(dPz)/dt can be evaluated 
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how many orbits we need to follow in presence of perturbation?

depending on what type of problem is to be 
solved (shortest time scale to be resolved), very 
few orbit transits (4-8) are sufficient.  

physics reason: 

• resonance conditions ‘selects’ particles that 
suffer transport

• nth-order resonance is covered after n orbits

• 5-10 poloidal orbits typically cover also 
precessional resonance for many AEs

• also non-resonant transport is sufficiently 
represented after 10 orbits (note, that we follow 
markers for fixed number of orbits, not total 
time!)

• cases with very large amplitude where Pz-
transport saturation occurs in a few poloidal 
orbits might need adoption of parameters  
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amplitude dependence:  dB/B =[10-4  -  4・10-3]

• dPz/dt ~ quadratic for small amplitudes, linear for larger amplitudes
• simple interpolation captures the amplitude scaling
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easy to include more than one perturbation:

n=16

n=17

n=16,17
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implementation details: example ITER 100015,1

• calculate <dPz/dt> , <dE/dt> for given fixed mode structures at fixed amplitude with FINDER/HAGIS, write into IDS (dB/B=5*10-3)
• ATEP code: read FINDER data, use 3D bspline methods to create <dPz/dt> , <dE/dt> on 3D grid as FEP

• use 3d scattered-data b-spline algorithm [Scattered Data Interpolation with Multilevel B-Splines, Lee 1997] - post-smoothing may be still implemented

rho_pol_norm

TAE, n=16,17

<dPz/dt>
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<dPz/dt>

co-passing particles

typical grid: (Pz,E,Λ) (128x40x40)
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implementation details: example ITER 100015,1

• calculate <dPz/dt> , <dE/dt> for given fixed mode structures at fixed amplitude with FINDER/HAGIS, write into IDS
• ATEP code: read FINDER data, use 3D bspline methods to create <dPz/dt> , <dE/dt> on 3D grid as FEP

• use 3d scattered-data b-spline algorithm [Scattered Data Interpolation with Multilevel B-Splines, Lee 1997] - post-smoothing may be still implemented

<dPz/dt>
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<dPz/dt>
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counter-passing particles

<dPz/dt>

<dPz/dt>
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implementation details: example ITER 100015,1

• calculate <dPz/dt> , <dE/dt> for given fixed mode structures at fixed amplitude with FINDER/HAGIS, write into IDS
• ATEP code: read FINDER data, use 3D bspline methods to create <dPz/dt> , <dE/dt> on 3D grid as FEP

• use 3d scattered-data b-spline algorithm [Scattered Data Interpolation with Multilevel B-Splines, Lee 1997] - post-smoothing may be still implemented

<dPz/dt>
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implementation details: example ITER 100015,1

• calculate <dPz/dt> , <dE/dt> for given fixed mode structures at fixed amplitude with FINDER/HAGIS, write into IDS
• ATEP code: read FINDER data, use 3D bspline methods to create <dPz/dt> , <dE/dt> on 3D grid as FEP

• use 3d scattered-data b-spline algorithm [Scattered Data Interpolation with Multilevel B-Splines, Lee 1997] - post-smoothing may be still implemented

<dPz/dt> <dPz/dt>
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all particles:

can be easily mapped to <s>: 

similar for  dE/dt
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diffusions coefficients: D(s,E) and D(s)
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E integration

to be done: transform into D(s,E)=<s>2/<t> 
and feed back to transport code

<dPz/dt>
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broadened spectrum of modes: n=16-24, all with fixed amplitude (dB/B=5*10-3)
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progress on implementation of transport model:
ATEP code
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1 M markers

ITER: 100015:  FEP is available from H&CD WF [thx. M. Schneider]

original
smoothed@radial nNBI peak

on-off
on-on

off-off
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|Pz|
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ATEP code: advance transport equation 

simple finite difference scheme to start with (final scheme to be decided when sources/collisions are implemented): 

FEP at start:

runtime: several seconds

note: term excluded so far: dPz/dt assumed constant -> kick model limit 
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ATEP code: advance transport equation 
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differential dF/dt:

ATEP code: advance transport equation 
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|Pz|

ATEP code: advance transport equation: 1d projection 

using ITER NBI off-off configuration
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ATEP code: advance transport equation: 1d projection 

using ITER NBI on-on configuration using ITER NBI on-off configuration

|Pz||Pz|
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verification plans

•add PSZS diagnostic to post-run HAGIS output and compare 
FEP(ATEP) and FEP(HAGIS) for:

•smoothing of FEP
•convergence of PSZS (no. orbits, resolution,etc…)
•mode spectrum
•Pz and E transport w/o E//

•compare to ORB5, HMGC/HYMAGIC in various limits
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validation plans



exploit EP stability workflow:  AUG data example: L-H 
transition in presence of TAEs 

• analyse L-mode,H-mode and transition phase using

• also systematic uncertainty quantification feasible

L-mode H-mode

n=2 TAE
IDA +

TRVIEW +
EP-WF: LIGKA  local +
EP-WF: LIGKA  global    

to
r. 

m
od

e 
nu

m
be

r

• automated processing of 160 time slices based on IDA equilibria and profiles
• fully implemented in IMAS, ensuring reproducibility 



MET Workshop 4.March 2021

radial flattening of EP gradient observed - 
inwards transport

control case available, where no strong Alfvénic mode activity is observed (#34921)

TAEs redistribute particles radially: FIDA 
measurements in comparison to neoclassical 
TRANSP/NUBEAM calculations - inwards 
transport due to off-axis peaked FNBI

[Lauber IAEA FEC 2018]
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Evidence for anomalous core background ion heating due to Alfvénic modes

phase with no modes

phase with modes

#36267#36267

time[s]
1.5 2.52.0 3.0 3.5 4.0

fr
eq
ue
nc
y[
kH
z]

assess effect of EP re-distribution on Te profiles - is the transport enough  to explain the Te difference?

other cases/experiments very welcome!
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summary & outlook

• IMAS-based orbits data-base and QL orbit averaged particle response implemented - PSZS structures stored as IDS 
distribution objects

• general FEP generated from marker data 

• evolved PSZS transport equation in kick-model limit

next steps:

• fill transport IDS with D(s,E) - couple to RABBIT/ETS
• add amplitude dependence of PSZS i.e. d (dP/dt)dPz * FEP term -> similar to RBQ model
• add various intensity closure models
• add collisions and sources - starting with Langevin limit for decorrelation processes, add bounce averaged collision operators 
- compare with CKA-EUTERPE [Brizard, Slaby/Kleiber, Hoppe,…]

• can be used to check diffusive vs convective model, different mode spectra, overlap criteria
• separate scales according to PSZS theory -> use to evolve to non-linear equilibria

• speed up, hopefully ACH support next year, integrate in WF framework


