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The interface to the MUMPS solver was updated in the JOREK MHD
code to support Block Low Rank (BLR) compression and an interface to the
new PaStiX solver version 6 has been implemented supporting BLR as well.
First tests were carried out with JOREK, which solves a large sparse matrix
system iteratively in each time step. For the preconditioning, a direct solver
is applied in the code to sub-matrices, and at this point BLR was applied with
the results being summarized in this report. For a simple case with a linearly
growing mode, results with both solvers look promising with a considerable
reduction of the memory consumption by several ten percent was obtained. A
direct increase in performance was seen in particular configurations already.

The choice of the BLR accuracy parameter ǫ proves to be critical in this
simple test and also in more realistic simulations, which were carried out
only with MUMPS due to the limited time available. The more realistic
test showed an increase in run time when using BLR, which was mitigated
when using larger values of ǫ. However, the GMRes iterative solver does
not reach convergence anymore when ǫ is too large, since the preconditioner
becomes too inaccurate in that case. It is thus critical to use an ǫ as large as
possible, while still reaching convergence. More tests regarding this optimum
will be necessary in the future. BLR can also lead to an indirect speed-up
in particular cases, when the simulation can be run on a smaller number of
compute nodes due to the reduced memory consumption.
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1 Background

1.1 JOREK solver

The JOREK [1] solver always involves LU factorisations, either to solve the entire matrix
directly (generally used when the simulation is run axisymmetrically) or as a precondi-
tioner before using the iterative solver GMRes. We focus on the latter case.

In the preconditioner, the blocks of toroidal harmonics are assumed to be decoupled
from one another (i.e. off-diagonal blocks are not considered in the preconditioner), which
greatly reduces the memory requirements and the runtime. This approach comes to its
limits when the system is very nonlinear, as the preconditioner will be inaccurate and
many GMRes iterations may be needed to converge to the solution.

1.2 LU factorisation of sparse matrix

The blocks of harmonics are sparse matrices (i.e. a small percentage of entries is non-
zero) and naive algorithms used for dense matrices should thus not be applied here.
Indeed, these would lead to a substantial fill-in: the combined storage cost for the L
and U factors would greatly exceed that of the original matrix. The JOREK code makes
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use of either PaStiX [2] or MUMPS [3], both of which are able to efficiently handle sparse
matrices.

In the following, we will briefly present the main steps of these solvers, without going
into the details. More information can be found e.g. in [4].

In the analysis phase, a graph ordering tool is called, generally SCOTCH or METIS.
These represent the matrix as a graph and an elimination tree is constructed to reduce
fill-in. This tree is traversed as each node is eliminated and its contribution to nodes
further up the tree are computed (corresponding to fill-in). This corresponds to an
update of nodes up the tree which can be done either immediately after elimination
(fan-out or right-looking), as late as possible before the elimination of the node further
up the tree (fan-in or left-looking) or it can be carried up the tree, accumulating further
updates from other nodes in so called fronts (fan-out or right-looking)1.

In the factorisation phase, the factors of the L and U matrices are computed, fol-
lowing the elimination tree obtained in the analysis phase. This is typically the most
CPU intensive step, although the factorisation does not need to be repeated for every
time step in a typical JOREK simulation, since the preconditioning matrix is reused as
long as reasonable convergence is obtained in GMRes.

In the solve phase, the solution is computed using standard forward and back-
substitution methods. A solve also has to be repeated for every iteration in GMRes.

1.3 BLR compression

Even with the use of graph ordering tools, the fill-in can be substantial and the required
memory storage for the factors of L and U can be very high. As a possible solution to this
problem, the factors could be compressed using Block-Low-Rank (BLR) compression.

Let A be a matrix of size m× n. Let kǫ be the approximated numerical rank of A at
accuracy ǫ. A is a low-rank matrix if there exist three matrices U of size m× kǫ , V of
size n× kǫ and E of size m× n such that :

A = U · V T + E, (1)

where ||E||2 ≤ ǫ and kǫ · (m+n) < mn. The last condition implies lower dimensionality
and thus also lower storage costs for combined U and V than for original A, provided
the matrix is sufficiently dense. The basic idea is to represent the matrix as the product
of two skinny matrices. Note that lossless compression is possible as the accuracy ǫ can
be set to 0.

Besides possible memory gains, using BLR compression can in principle also reduce
the runtime, as basic matrix operations are accelerated. Indeed, for m = n, matrix-
matrix products go from 2n3 (for dense matrices) to 2kn(n + 2k) operations, while a

1 PaStiX is using a fan-in strategy in the communication. In the sense that A · B are accumulated
locally on the origin node, and then sent to the remote node when all contributions are applied, such
that the remote node can perform the operation C = C+ sum(A ·B). Except for this specific case in
distributed, all the algorithm is fan-out/right-looking oriented to get more parallelism, even for the
accumulation of the remote contribution. MUMPS, in contrast, based on the multi-frontal approach,
can be considered as fan-in/left-looking oriented algorithm.
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triangular solve goes from n3 to 3kn2 operations. The complexity is thus reduced for
k < n/2 and k < n/3 respectively.

The L and U matrices are generally not low-rank, but individual sub-matrices may be
efficiently compressed. There is no general admissibility criterion to determine if a block
should be stored in low-rank. This depends on the solver used, see [5] (MUMPS) and [6]
(PaStiX) for more details on the implementation of BLR compression in these solvers.

1.3.1 Runtime performance in JOREK

The runtime of the JOREK solver will be impacted by the use of BLR compression. Before
testing this in detail in the rest of this report, we layout how the performance is affected
by BLR compression.

The analysis step takes a longer time due to the additional search for suitable matrices
to compress. However, the impact on the total runtime is negligible, as the analysis only
has to be done once at the simulation (re-)start.

Two opposing effects will play a role in the factorisation step: the compression of the
LU blocks leads to an overhead but the compressed matrices lead to faster basic matrix
operations (see above). In practice, the time for factorisation seems to be generally
increased with BLR in our tests, although higher values of ǫ can reduce or even revert
this effect.

The same conclusions hold for the solve step, as the (de-)compression induces an
overhead, which the faster matrix operations can cancel2

The runtime performance of the GMRes iterative solver is set by the number of
iterations needed to reach convergence and the time needed for a basic solve (see step
above), as it is repeated for every GMRes iteration. As for the factorisation and solve
steps above, this means that the use of BLR causes an overhead but larger values of ǫ will
not always be beneficial here. Indeed, they may reduce the number of matrix operations
and thereby reduce runtime, but a too large value of ǫ deteriorates the accuracy of
the preconditioner and leads to worse convergence in GMRes, increasing the number
of iterations necessary to reach convergence. Taken to the extreme, this can stop the
simulation, as the GMRes iterative solver is given a maximum number of steps to reach
convergence in JOREK.

2 BLR compression in MUMPS

2.1 Resolution scan

2.1.1 Basic setup

All simulations in this report were carried out on a Linux cluster, where each compute
node is equipped with 2x Intel Xeon Gold 6130 CPUs with 16 cores and 2.1 GHz base
clock speed, AVX 512, “Skylake” architecture, 22 MB L3 cache, and fast Omnipath
interconnect.

2This overhead can be avoided and will be avoided in both PaStiX and MUMPS in the future.
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We first perform basic resistive ballooning mode simulations (a test case called inxflow

in JOREK) with 2 toroidal harmonics (n = 0, 6) and 4 toroidal planes. The simulations
are restarted during the linear growth phase for 10 time steps, with the factorisation
enforced to be carried out in every time step. The iterative solver GMRes is given a
tolerance of 10−7 and 50 maximal iterations to reach convergence. Each simulation is
run on one compute node with 2 MPI tasks, with 2 OpenMP threads each.

The resolution was varied from (n_flux, n_tht) = (16, 20) up to
(n_flux, n_tht) = (128, 160), where n_flux denotes the radial and n_tht the poloidal
number of grid points, in 6 steps of approximate factors (

√
2,
√
2). For each resolution,

the runtime performance and memory consumption of the solver MUMPS are investi-
gated, with and without BLR compression, and with different values of the BLR toler-
ance: ǫ = 0, 10−16, 10−12, 10−8, 10−4.

2.1.2 Memory consumption

The total memory consumption in MB of the MUMPS solver depending on resolution
is shown in Tab 1 and Fig. 1. Note that the blocks corresponding to nonzero toroidal
harmonics have twice the dimensionality of the n = 0 block, such that 1/5 of the total
memory indicated is used in the n = 0 block and 4/5 in the n = 6 block.

Significant memory gains can be made using BLR compression. These gains are
exacerbated for large values of ǫ (as the matrices can be compressed more effectively)
and for large problem sizes (as there are more opportunities for compression).

n_flux,n_tht No BLR ǫ = 0 ǫ = 10−16 ǫ = 10−12 ǫ = 10−8 ǫ = 10−4

16, 20 799 822 815 813 806 733
22, 28 1762 1751 1742 1740 1690 1466
32, 40 4365 4023 4001 3956 3743 3118
44, 56 9047 8151 8086 7886 7286 5928
64, 80 20891 18603 18193 17375 15787 12644
88, 112 45628 40353 38148 36015 32494 26119
128, 160 101035 88741 81299 75508 67516 53717

Table 1: Memory consumption in the MUMPS resolution scan in Megabytes

Note, however, that large values of ǫ can significantly deteriorate the quality of the
preconditioning, leading to an increased number of iterations for GMRes (see Sec. 1.3.1).
Depending on the required tolerance for GMRes and the number of iterations, this can
even prevent convergence, which was the case in the highest resolution simulations with
ǫ = 10−4.

2.1.3 Runtime

The runtimes listed below are averages over the simulations’ 10 time steps. The activa-
tion of the Block-Low-Rank feature leads to an increase in the analysis phase’s runtime
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Figure 1: Memory gains from BLR compression

by a factor of approximately 2. It was however left out in the following, as the analysis
only has to be performed once and its impact on the performance is thus negligible.

n_flux,n_tht No BLR ǫ = 0 ǫ = 10−16 ǫ = 10−12 ǫ = 10−8 ǫ = 10−4

16, 20 1.1 1.5 1.5 1.4 1.4 1.2
22, 28 2.6 3.7 3.7 3.6 3.5 2.7
32, 40 7.2 10.3 10.0 10.1 9.0 7.0
44, 56 16.6 23.5 23.7 22.5 19.3 14.2
64, 80 44.1 64.6 62.5 56.5 46.1 32.9
88, 112 119.5 168.6 144.6 126.6 101.9 74.1
128, 160 330.1 496.0 388.6 319.6 253.4 164.9

Table 2: Runtime for factorisation step (in s)

The runtime for the factorisation step of the MUMPS solver is shown in Tab. 2 and
Fig. 2. Here, the use of BLR compression can be detrimental (overhead caused by the
compression of LU factors) or beneficial (speedup of matrix operations). Which of these
two effects dominates depends on the size of the problem and the choice of ǫ.

The runtime for the solution step of the MUMPS solver is shown in Fig. 3. The solution
step generally incurs an overhead from compression, which can however be mitigated at
high resolutions, where the decrease in the number of operations can compensate for the
overhead.

The runtime for the GMRes step of the JOREK solver is shown in Fig. 4, where the
strong spike for ǫ = 10−4 reflects the loss of convergence. A slowdown is observed at all
resolutions as the same overhead mentioned in the solution step comes into play here,
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n_flux,n_tht No BLR ǫ = 0 ǫ = 10−16 ǫ = 10−12 ǫ = 10−8 ǫ = 10−4

16, 20 2.0 2.7 2.7 2.6 2.6 2.5
22, 28 4.5 6.1 6.1 6.1 5.8 5.3
32, 40 11.1 15.7 15.2 15.5 14.2 13.2
44, 56 24.4 34.0 34.3 33.3 29.6 25.8
64, 80 59.9 88.2 86.1 80.1 84.0 ∞
88, 112 151.7 217.1 191.6 175.0 151.0 ∞
128, 160 410.8 626.2 499.2 442.7 428.8 ∞

Table 3: Runtime for entire time step (in s)

as well as larger number of iterations in the GMRes solver when ǫ is too high and the
preconditioner is too inaccurate.

The reduction of the time for the solution phase in Fig. 3 at the highest resolution
leaves open the possibility that this phase is actually accelerated at even larger resolu-
tions. This could then also possibly lead to a reduction in the time for GMRes, if it was
possible to compensate for both the (de-)compression overhead and the higher number
of iterations caused by the preconditioner’s inaccuracy.
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The average total runtime per time step shown in Tab. 3 confirms the generally in-
creased runtime when using BLR compression. For large values of ǫ, this increase is
quite modest. In our simulations at highest resolution, the optimal choice is ǫ = 10−8,
where the increase in runtime is minimal (no BLR: 411 s, ǫ = 10−8: 429 s) while the
memory requirements are substantially lower (no BLR: 101 GB, ǫ = 10−8: 68 GB). The
high performance observed here is due to the reduced runtime for factorisation, largely
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offsetting the increase in runtime from GMRes. The peculiar spike in the runtime for
ǫ = 10−8 and a resolution of (n_flux, n_tht) = (64, 80) is due to an increase in the
number of iterations of GMRes for 3 out of the 10 time steps, suggesting that fluctuations
in the preconditioner’s accuracy can come into play for larger values of ǫ.

However, the JOREK solver generally keeps the preconditioning LU factors for several

8



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

(16,20) (22,28) (32,40) (44,56) (64,80) (88,112) (128,160)

t i
te

r(
M

U
M

P
S

+
B

LR
) 

/ 
t i

te
r(

M
U

M
P
S

, 
n
o

 B
LR

)

Resolution (n_flux, n_tht)

ε = 0

ε = 10-16

ε = 10-12

ε = 10-8

ε = 10-4

Figure 5: Average runtime per time step

timesteps, until it does not satisfactorily precondition the matrix anymore, i.e. the
number of GMRes iterations in the previous time step has passed a certain threshold.
As a consequence, for many time steps only the solve step and GMRes have to be
performed. For too large ǫ, this could increase the runtime substantially, as GMRes
is repeated several times for each LU factorisation. Additionally, the LU factorisation
might need to be repeated after a smaller number of time steps. However, the runtimes
for the solution phase and GMRes phases might be reduced at very high resolutions due
to the reduced number of operations, as Figs. 3 and 4 seem to suggest.

The accuracy ǫ should be chosen as large as possible to allow for significant memory
gains and keep the runtime as low as possible, without being too high, such that GMRes
convergence is not too greatly impaired. This choice of ǫ will depend on the exact
problem at hand as well as the setup of the GMRes solver.

2.2 More realistic simulation

The goal of this section is to ascertain the benefits of BLR compression during the
nonlinear phase, where the preconditioning matrix is not as effective and the convergence
of GMRes is thus even more critical, as well as its general usefulness in a typical JOREK
simulation.

We thus turn to simulations of shattered pellet injections (SPI), running for a larger
number of time steps (7330) through linear and nonlinear phases, with 6 toroidal harmon-
ics (n = 0...5) and 32 toroidal planes. The resolution of all simulations is (n_flux,n_tht)
= (56, 138). The maximal number of iterations of the GMRes iterative solver was set
to 100 while its tolerance was set to 10−6 and 10−7, to investigate its effects on the con-
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vergence properties when using compression. Indeed, we force the recalculation of the
preconditioner (i.e. a factorisation) every time the number of steps in GMRes exceeds
20, such that a lower GMRes tolerance will lead to more factorisations.

We again compare simulations with different MUMPS setups: without BLR and with
BLR, using different values of ǫ. For the higher GMRes tolerance value of 10−6, the
simulations with ǫ = 10−8, 10−4 did not yield satisfactory convergence in GMRes, the
former in the linear and the latter in the nonlinear phase. We thus examine only the
values ǫ = 0, 10−16, 10−12, 10−10.

The total memory consumption of the MUMPS solver in GB amounts to

• No BLR: 166.0 (100%)

• BLR, ǫ = 0: 147.1 (88.6%)

• BLR, ǫ = 10−16: 139.8 (84.2%)

• BLR, ǫ = 10−12: 132.6 (79.9%)

• BLR, ǫ = 10−10: 126.8 (76.4%)

The runtime performance data of all simulations is given in Tab. 4. Note that the
runtime for the factorisation and solve steps is independent of the GMRes tolerance
value.

GMRes tol. No BLR ǫ = 0 ǫ = 10−16 ǫ = 10−12 ǫ = 10−10

Nbr. of factorisations 786 716 950 805 816
10−6 Avg. time per iter. (s) 47.0 65.7 68.2 63.3 61.9

Avg. nbr. of GMRes iter. 14.5 14.5 15.6 14.7 14.7
Avg. time per GMRes (s) 13.5 28.8 28.9 26.4 25.0

Nbr. of factorisations 3145 3033 3044 3026
10−7 Avg. time per iter. (s) 76.6 109.4 104.9 99.7

Avg. nbr. of GMRes iter. 21.2 21.0 21.3 20.8
Avg. time per GMRes (s) 18.8 40.9 38.8 35.8

Avg. time per facto. (s) 50.7 67.9 63.1 58.3 55.2
Avg. time per solve (s) 0.46 1.78 1.63 1.58 1.45

Table 4: Performance of BLR compression in SPI simulations

2.2.1 Runtime performance for a GMRes tolerance of 10−6

In the first set of simulations with a GMRes tolerance of 10−6, the number of factorisa-
tions varied somewhat unexpectedly, as can be seen in Tab. 4. Indeed, the number of
factorisations rose substantially for ǫ = 10−16, largely exceeding the number of factori-
sations for ǫ = 10−12 and ǫ = 10−10. Indeed, the frequency (number of occurences) for
each occuring number of GMRes iterations shown in Fig. 6 reveals an increased number
of GMRes iterations between 21 and 26 for ǫ = 10−16. This in turns leads to a higher
average time per iteration (Tab. 4).
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This discrepancy can be explained by the fact that a GMRes tolerance of 10−6 is too
high, possibly leading to different physical results. Note that in this simulation, most
factorisations take place during the physically violent thermal quench of the plasma
core. Even small variations in the duration or intensity of this process can lead to the
observed differences. Indeed, a longer thermal quench is observed for ǫ = 10−16, as shown
in Fig. 7 (at t ∼ 1300− 1500). Note that this does not directly explain why the number
of factorisations increases for ǫ = 10−16, but it does make this fact less surprising. The
reduction of the relative differences in the number of factorisations at a higher GMRes
tolerance value of 10−7 (see next section) seems to confirm that the original tolerance of
10−6 is too high.

At all observed converging values of ǫ, the runtime is substantially increased, as shown
by the average runtime per iteration in Tab. 4. This is only partly due to longer and more
numerous factorisations, as the biggest contributing factor to the increased runtime is
the increased runtime in GMRes, which originates from an increased runtime per solve,
not from an increased number of iterations, as can be seen from Tab. 4. At the highest
converging value of ǫ = 10−10, this leads to a ∼ 32% runtime increase for a memory gain
of ∼ 24%.

2.2.2 Runtime performance for a GMRes tolerance of 10−7

In the case of a GMRes tolerance of 10−7, the number of factorisations seems to be
roughly constant for all values of ǫ, and it is surprisingly slightly reduced compared to
the simulations without BLR compression. The latter is probably again due to small
differences in the physical results, as the former indicates that the accuracy of the precon-
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ditioner is determined here by the linearity of the system. Indeed, the average number
of GMRes iterations and the number of factorisations does not increase for large values
of ǫ up to 10−12. For ǫ = 10−8, this does not hold anymore, as the GMRes solver did
not reach convergence in this case.

The constancy of the number of factorisations in this case means that the time per
iteration is now set by the time for factorisation, solve and GMRes, all of which incur
increased runtimes from (de-)compression. However, these are partially offset by the
use of larger values of ǫ. Even at the high number of factorisations for this GMRes
tolerance value, the main contributor to the increased runtime is the runtime in GMRes,
although the increased runtime for factorisation now plays a larger role compared to the
higher GMRes tolerance value. At the highest observed converging value of ǫ = 10−12,
a memory gain of ∼ 20% for a ∼ 30% runtime increase.

The above analysis suggests that the optimal ǫ value should be found somewhere
between 10−12 and 10−8, which could unfortunately not be investigated due to time
constraints for this study. Logically, the optimal ǫ value should be such that the in-
accuracy in the preconditioner induced by the compression accuracy is similar to that
inherent in our assumption of decoupled harmonics in the preconditioner. This should
ensure that the time for factorisation, solve and GMRes is decreased without incurring
too great an increase in the preconditioner’s inaccuracy.

Moreover, it might even be worth going beyond this limit by increasing the maximal
number of GMRes iterations when using BLR compression, allowing for still larger values
of ǫ which further reduce memory consumption and possibly offset the runtime increase
caused by the larger number of GMRes iterations.
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3 PaStiX version 6.x

The new version 6.0 of the PaStiX sparse matrix solver is still in development, but seems
to be the way forward for JOREK, as it brings new features such as Block-Low-Rank com-
pression 3. It is however not yet MPI-parallelised, which will be implemented in version
6.1, so its current use in JOREK is restricted to cases with one MPI task per PaStiX in-
stance (i.e. one task per toroidal harmonic). Apart from this, the solver is already fully
functional in JOREK, as an updated interface has been implemented in mod_poiss.f90

(equilibrium), solve_pastix_all.f90 (direct LU factorisation of entire matrix, gener-
ally used in axisymmetric runs), solve_mat_n.f90 and gmres_precondition.f90 (LU
factorisation as preconditioner followed by GMRes, generally used for multiple harmon-
ics).

The implementation can handle multiple degrees of freedom to make analysis and
factorisation more efficient (switched on through the flag USE_BLOCK in JOREK), although
the underlying matrix structure and the analysis results currently have to be expanded
during the analysis phase, as the thereafter invoked calls do not yet support multiple
degrees of freedom. As this expansion is as of now only implemented in the analysis
phase, the analysis is currently being repeated for every time step when using PaStiX 6

with multiple degrees of freedom in JOREK4. Once the PaStiX developers have remedied
to these problems, the expansion and repeated analysis should be removed in the JOREK
implementation, giving a further boost to the runtime performance.

3.1 Benchmarking

In the following, we present small benchmark tests of PaStiX 6 with the previously
generally used PaStiX 5.2.1 (”Release 4492”). We again use a peeling-ballooning scenario
(inxflow): where the simulation is run with 2 toroidal harmonics (n = 0, 6) in the phase
of linear growth (Sec. 3.1.1).

The time evolution is computed with and without the USE_BLOCK feature, which also
the evaluation of its usefulness in different versions of PaStiX. Furthermore, in Sec. 3.1.2,
the scaling in the number of OpenMP threads is checked for the different PaStiX versions
by running 10 time steps in the linear growth phase with different numbers of OpenMP
threads. Finally, 10 time steps are again rerun in the linear growth phase for various
spatial resolutions in Sec. 3.1.3 to check how the new PaStiX version scales with the
problem size. The basic setup has a spatial resolution of (n_flux,n_tht) = (32,40)

and the number of OpenMP threads is set to 2.

3.1.1 Basic simulation

The simulation is run for 90 time steps in the linear growth phase to obtain a first idea of
the typical runtime performance but also to later assess if the OpenMP and resolution

3For the tests shown here, a development version equivalent to release 6.0.2 with some addi-
tional corrections was used. The hash key of the respective commit in the git repository is
17f18ce6e87de504580c27d52e5672311c413d21.

4This overhead can be avoided in the future.
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scans which are run over only 10 time steps yield the correct results. The runtimes
measured in this first benchmark are given in Tab. 5. They are all averaged except the
analysis for single-dof which is performed only once. Both single and multiple degrees
of freedom (dof) are investigated (USE_BLOCK feature).

Runtime (in s)
single dof multiple dofs

PaStiX 5.2.1 PaStiX 6.0.2 Release 5.2.1 PaStiX 6.0.2

Analysis 26.1 4.9 0.14 0.47
Factorisation 10.9 9.5 7.81 7.77
Solve 0.20 0.15 0.17 0.15
GMRes 1.96 1.56 1.79 1.55

Table 5: Basic benchmark of PaStiX 6

Considering a single degree of freedom, the time for analysis is subtantially reduced
in PaStiX 6, by a factor of ∼ 5. However, the analysis phase only has to be repeated
once per simulation (restart), such that this gain is appreciated but should not heavily
influence the total runtime.

The reason why the use of multiple degrees of freedom seems to lead to a greater speed-
up in the older PaStiX version is that the time listed under Analysis also includes the
conversion of the matrix to an input usable by PaStiX. This conversion takes slightly
longer for PaStiX 6 because the latter necessitates an additional new sparse matrix
structure, whereas the matrix was directly passed to PaStiX beforehand. This additional
overhead could be reduced in the future by directly using the new sparse matrix structure
in JOREK’s distribute_harmonics routine.

The time for factorisation is also reduced in this simple case for the new PaStiX

version. The difference shrinks when multiple degrees of freedom are used, such that
the times for factorisation are very similar here. Indeed, multiple degrees of freedom are
not yet implemented in the factorisation part of PaStiX 6, such that the speed-up is
reduced to the contribution from a more performant analysis.

Finally, the runtimes for solution and for GMRes are reduced in the new PaStiX

version, by approximately 25% when a single degree of freedom is assumed. Here, the
use of multiple degrees of freedom does not lead to a speed-up for PaStiX 6, as it is not
yet implemented in the solve part.

3.1.2 OpenMP thread scan

In this scan, 10 time steps were performed during the linear growth phase and the
factorisation was forced to take place at every time step. The number of OpenMP threads
was varied in factors of 2 from 2 to 32. The resulting runtimes for the factorisation and
solve steps, as well as the GMRes solver, are shown in Fig. 8. The analysis step was left
out as it did not vary depending on the number of OpenMP threads, so the result from
the previous basic benchmark stands (old version: ∼ 25 s, new version: ∼ 5 s).

Although the scaling in the number of OpenMP threads seems to be worse for the
factorisation step in the new PaStiX version, the difference is minimal even at 32 threads,
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Figure 8: Runtimes in OpenMP scan for the single-dof case

where the runtimes for factorisation are basically the same between the two PaStiX

versions. The difference also becomes smaller for the solve and GMRes steps, but the
new version of PaStiX was still always faster for these compared to the old version.
This can also be seen in Fig. 9, where the speed-up in PaStiX 6 has been computed
by dividing the runtime of the older PaStiX version by that of PaStiX 6. The analysis
phase speed-up is ∼ 5 for all OpenMP configurations.

3.1.3 Resolution scan

The same 10 time steps were now performed at resolutions between (n_flux, n_tht)

= (16, 20) and (128, 160) in 6 steps of approximate size (
√
2,
√
2). Only 2 OpenMP

threads were used, and the factorisation was again forced to be repeated at every time
step.

The speed-up in this scan can be seen in Fig. 10, showing that PaStiX 6 leads to a
speed-up for all phases (Factorisation, Solution, GMRes) and all resolutions, with the
notable exception of the solution and GMRes phases at the very highest resolutions.
The analysis phase was not included in Fig. 10, as it stays constant around ∼ 500% for
all resolutions.

The speed-up in the factorisation is most encouraging as it does not plummet at larger
resolutions, which is positive considering how significant this part of the solver is (e.g.
runtime for factorisation at the highest resolution employed here, PaStiX Release 4492:
631 s, PaStiX 6: 470 s). The solve and GMRes phases show a more mixed picture, as
the speed-up seems to be lost when going to very high resolutions. Whether this trend
continues at even higher resolutions remains to be investigated, and this trend could of
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Figure 10: Speedup from PaStiX 6 in the resolution scan

course change during the further development of PaStiX 6. Moreover, these phases are
generally less critical for the total runtime (e.g. runtime for solution phase at the highest
resolution employed here, PaStiX Release 4492: 6.93 s, PaStiX 6: 11.9 s). This prompts
the need for a future benchmarking of PaStiX 6 on a realistic JOREK simulation, where
the effect on the total runtime could be meaningfully investigated.
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3.2 Preliminary results from BLR compression with PaStiX 6

The new BLR compression feature in PaStiX 6 could not yet be thoroughly tested,
as some convergence problems occured when using the memory-optimal settings. The
following results are derived from a resolution scan with the same setup as in Sec. 2.1
but using the PaStiX 6 solver with the ”just-in-time” setting, which optimises runtime
gains instead of memory gains [6].

The memory consumption, obtained from a PaStiX 6 diagnostic, is listed in Tab. 6.
Note that the numbers may not all be accurate to the last digit, and can not necessarily
be directly compared to those given in the MUMPS resolution scan. Nevertheless, they
indicate that very good compression can be attained, even for small (albeit non-zero)
values of ǫ. This also seems to indicate that the accuracy of the BLR solver here cannot
be directly compared to that from the MUMPS solver, possibly due to an additional internal
scaling in MUMPS.

n_flux,n_tht No BLR ǫ = 0 ǫ = 10−16 ǫ = 10−12 ǫ = 10−8 ǫ = 10−4

16, 20 477 476 473 460 385 249
22, 28 1070 1060 1045 968 770 470
32, 40 2579 2549 2393 2112 1681 982
44, 56 5570 5520 4910 4273 3398 1907
64, 80 13320 13120 10970 9410 7410 4020
88, 112 27770 27460 21620 18470 14600 8020
128, 160 65100 64300 47600 40680 31950 17350

Table 6: Memory consumption in the PaStiX 6 resolution scan in Megabytes

The speed-up in the average time per iteration in Fig. 11 confirms that the ǫ values
cannot be directly compared to those of the MUMPS solver, as many more simulations
could not reach convergence here (all runs with ǫ = 10−4 and almost all with ǫ =
10−8)5. However, it seems easier to obtain a speed-up here, as many simulations with
ǫ = 10−12, 10−16 demonstrate, especially at high resolutions.

This speed-up can mostly be traced back to the speed-up in the factorisation step,
shown in Fig. 12. Note that the factorisation is forced to be repeated every time step in
this scan, such that the factorisation will be the main contribution to the total time per
iteration. This is not necessarily the case in a typical JOREK simulation, as Sec. 2.2
demonstrated.

It is thus instructive to investigate the speed-up in the solve and GMRes steps, shown
in Figs. 13 and 14. The speed-up or slow-down of the solve phase depends on the value
of ǫ employed, a higher resolution only mildly increases the speed-up for a given ǫ. In
comparison, the GMRes runtimes seem to always be longer, as a result of the worse
preconditioner. At high resolutions however, the fact that the time for solve is reduced
with BLR suggests that the runtime for GMRes could also be reduced in a realistic

5Note, that version 6.0.2 of PaStiX also had a bug, which will be resolved in 6.0.3, which might partially
explain this behaviour
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Figure 13: Runtime for solution step

JOREK simulation. Indeed, the number of GMRes iterations in Tab. 4 showed that for
small enough values of ǫ the accuracy of the preconditioner is primarily determined by
the nonlinearity of the system, not by the BLR accuracy. In other words, the increased
runtime for GMRes observed in Fig. 14 merely reflects the highly increased number of
iterations in GMRes, which were not observed in the realistic simulation (Sec. 2.2) when
using small enough values of ǫ.

The results in this section are preliminary, as many aspects of BLR compression in
PaStiX 6 remain to be investigated. However, they are already very encouraging as
the memory consumption is greatly reduced and the factorisation step seems to enjoy
a subtantial speed-up. Whether this speed-up can rival the slow-down in the GMRes
phase in a realistic JOREK simulation remains to be investigated.

4 Conclusions

Interfaces in the JOREK MHD code have been updated for MUMPS and PaStiX in
order to test block low rank compression offered by these solver libraries. First tests
show promising trends. Further tests are necessary to fully evaluate the benefit in
production simulations.
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