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• This work: single temperature reduced MHD plus extensions 

in X-point geometry [12]

• Toroidal Fourier decomposition 

• 2D poloidal Bezier finite elements

• Fully implicit time discretization

• Neoclassical + diamagnetic drifts driven by ∇pi /n [13]

• Consistent bootstrap current density evolution

Conclusions
● We show simulations of edge localised instabilities during 

H-mode pedestal build-up with high separatrix density
● Diamagnetic stabilisation is studied by scanning the 

temperature recovery time scale
● At low heating power, and little diamagnetic stabilisation, 

small ELMs, which match several experimentally relevant 
observations, are simulated

● High heating (large diamagnetic stabilisation): a large type-I 
ELM is observed

● Medium heating: mixed small + type-I ELMs regime observed

● Next: multiple type-I ELMs, small ELMs at high triangularity, 
the stabilising effect of local magnetic shear, separation of ion 
and electron temperature, and type-III ELMs 

Introduction and Motivation
● Type-I Edge localised modes (ELMs) are thought to be 

intolerable for ITER [1]

● Small ELMs are potentially a good steady-state scenario [2-4]

● At low triangularity, small ELMs degrade confinement [3,5]

● From the experiment it is unclear if ITER could operate only 

with small ELMs [6], thus simulations are imperative 

● JOREK is used to simulate small ELMs at low triangularity in 

ASDEX Upgrade and how they bifurcate to type-I ELMs
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 1. Experimental observations

 4. Simulation results and 
observations

● With Psep ≳ PLH: enter H mode with type-III ELMs, and increasing Psep encounters a type-I ELM threshold

○ Type-III ELMs appear below the ideal MHD stability boundary, and fELM ~ 1/Psep [7,8]

● High ne,sep (≳0.4 nGW) shows small ELMs which may degrade confinement, and increasing Psep gets type-I ELMs [3,5]

○ BUT! At high triangularity, confinement stays good [2-4,6,10]!

○ Broadband fluctuations (30-50 [kHz]) observed across devices close to pedestal top (fig1) [10,2,11]

○ No clear crash + recovery dynamics in pedestal T or 𝛻p observed, but roughly constant fluctuations

Non-linear simulations of small ELMs and 
bifurcation to type-I ELMs at low triangularity

3. Simulation set-up 
● Start from stable post-ELM equilibrium at low triangularity

● Set D⟂ and 𝛫⟂ (fixed in time) to build-up pedestal (𝛫
∥

 ~ 108 𝛫⟂)

● High separatrix density nsep ~ 0.4 nGW

● Use resistivity around 3x larger than experiment

● Toroidal resolution: n=0,2,4,...,12

○ Disclaimer: Higher toroidal modes also seen in experiment

● Three different total heating powers

● Double bootstrap current source to keep simulation time shorter

● High heating: strong type-I ELM (fig4.a, fig5 and       in fig7)

○ n=2 precursor followed by n=2+4 dominated ELM crash

○ Outer (inner) divertor power loads during crash ~24(18) [MW]

○ ΔE/WMHD ~ 10% in approx. 2 [ms]

● Medium heating: mixed small ELMs + type-I ELMs (fig4.b)

○ Type-I ELM crash not yet reached, but pedestal conditions

show that it is approaching (fig5)

○ Small ELMs deposit between 5-7 (3-4) [MW] on the 

outer (inner) divertor until they give way to the type-I ELM

● Low heating: only small ELMs (fig4.c and        in fig7)

○ max(-𝛻p) remains low around ~ 120 [kPa/m] (fig5)

○ In [11], under similar conditions (AUG #25740), 

type-II ELMs kept max(-𝛻p) at ~ 150 [kPa/m]

○ Freq. spectrum peaks at ~30 [kHz] (fig6), like small ELMs

in AUG [10], TCV [3], and JET [11]

○ Outer (inner) divertor “constant” power loads 4-6 (3-4) [MW] 

○ Separatrix ballooning turbulence, which sets in due to large 

nsep (large ⍺sep), causes most losses

○ Suddenly increasing heating recovers type-I ELM behaviour

○ Lowering nsep to 30% nGW sees the small ELMs disappear

(2) AUG type-I and small ELMs in n vs. T space [4](1) Frequency spectrum of ΔT/T fluctuations in ASDEX Upgrade
during type-I inter-ELM (in black) and small ELMs (in red) operation  [10]

(3) Axisymmetric pedestal temperature recovery with different total heating power

(5) Perturbed pedestal temperature for the three different heating powers

(6) Frequency of δn fluctuations averaged over 6 [ms] for two different cases
(7)  High and low heating scenarios in n vs. T space, 
seems to agree very well with fig2 (originally from [4])

(4)  a=high heating, b=medium heating, c=low heating
[a,b,c].1 outboard midplane pressure gradient in time, and 

[a,b,c].2 magnetic energy of toroidal modes
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