
Parallelization of JOREK-STARWALL for non-
linear MHD simulations including resistive walls
(Report of the EUROfusion High Level Support

Team Projects JORSTAR/JORSTAR2)

S. Mochalskyy, M. Hoelzl, R. Hatzky

1. Introduction
Large scale plasma instabilities inside a tokamak can be influenced by the currents
flowing in the conducting vessel wall. This involves non linear plasma dynamics and
its interaction with the wall current. In order to study this problem the code that solves
the magneto-hydrodynamic (MHD) equations, called JOREK [1,2], was coupled [3]
with the model for the vacuum region and the resistive conducting structure named
STARWALL [4,5]. The JOREK-STARWALL model has been already applied to
perform simulations of Vertical Displacement Events (VDEs) [6], Resistive Wall
Modes (RWMs) [13], Quiescent H-Mode [6], and vertical kick ELM triggering [7].

At the beginning of the project it was not possible to resolve the realistic wall
structure with a large number of finite element triangles due to the huge consumption
of memory and wall clock time by STARWALL and the corresponding coupling
routine in JOREK. Moreover, both the STARWALL code and the JOREK coupling
routine were only partially parallelized via OpenMP. The aim of this project is to
implement an MPI parallelization to reduce memory consumption and execution time
such that simulations with large resolutions become possible.

The project JORSTAR is concerned with the MPI parallelization of STARWALL
(chapter 2). In the project JORSTAR2, the implementation of parallel I/O in JOREK
and STARWALL for the STARWALL response matrices, and the parallelization of the
JOREK-STARWALL coupling terms inside JOREK are addressed (chapter 3).

2. MPI parallelization of the resistive wall code
STARWALL

2.1. STARWALL code analysis
It was important to determine the most critical data structures and subroutines that
consume most of the memory and execution time before starting the implementation
of the MPI parallelization. The memory consumption and the execution time for
individual subroutines concerning different problem sizes can be controlled by tuning
three knobs, which directly influence the problem size (a test case with a closed
axisymmetric wall is considered):

 Number of triangles representing the boundary of the JOREK computational
domain:
ntri_p = 4*nv*n_points*2*(n_R+n_Z-2)

 Number of triangles in the wall: ntri_w = 2*nwu*nwv
 Number of sin/cos harmonics: n_harm

We changed the problem size by varying the following parameters independently:
(i) n_R and n_Z for ntri_p, (ii) nwu and nwv for ntri_w, and (iii) n_harm. A large scale
production run should finally correspond to the parameters: ntri_p=2*105,
ntri_w=5*105, n_harm=11.

2.1.1. Memory consumption analysis

Fig. 1 shows the memory consumption of the most important individual subroutines
during the scan of the parameter ntri_w by varying the variables nwu and nwv. For

2

this test case we fixed n_harm=1, n_R=n_Z=15, nv=32, and n_points=10. One can
see that three subroutines (matrix_wp, matrix_ww, and resistive_wall_response) are
the most memory demanding in this scan. Moreover, if we further scale our problem
to a production size run with nwu=nwv=500 (ntri_w=500000) five additional
subroutines (matrix_rw, solver, dsygv, matrix_ew, matrix_pe) will consume more than
50 GB memory. Therefore, all these subroutines must be parallelized in the final
version of the code.

Fig. 2 represents the memory consumption of the same subroutines as it was shown
in Fig. 1, however, this time with a parametric scan in the number of triangles within
the plasma (ntri_p). In this test we kept the following parameters constant
nwu=nwv=110, n_harm=1 but changed n_R=n_Z. The memory consumption
increased mainly in three subroutines (matrix_pp, matrix_wp, and matrix_ep), which
should be parallelized for a production run with ntri_p=2*105.

Fig. 1 The memory consumption of individual subroutines of the STARWALL code during the
scan over the number of the triangles discretizing the wall (ntri_w=2*nwu*nwv).

Fig. 2 The memory consumption of individual subroutines of the STARWALL code during the
scan over the number of the triangles within the plasma (ntri_p).

The last parameter tested was the number of sin/cos harmonics (n_harm). Fig. 3
shows the memory consumption per subroutine versus n_harm, which varies from
one to eleven. The value n_harm=11 corresponds to a production run. For this
testcase we kept the following parameters constant: nwu=nwv=80, n_R=n_Z=15. All

3

subroutines stay almost at the same level of memory consumption with only an
insignificant growth for some subroutines. In order to prove that the number of
sin/cos harmonics will not have a large influence on the memory consumption, whilst
the number of triangles is increased, we performed an additional test with
nwu=nwv=110. Indeed, as in the test above, the memory usage did not change much
during the n_harm scan.

Fig. 3 The memory consumption of individual subroutines of the STARWALL code during a
scan over the number of sin/cos harmonics.

STARWALL uses six subroutines (dpotrf, dpotrs, dgemm, dsygv, dgetrf, dgetri) from
the linear algebra package LAPACK that is part of Intel the MKL library. It was
important to check both, the size of the input matrices of these subroutines and the
additional memory allocation inside the subroutines in order to determine if we should
also replace these sequential subroutines by their parallel analogues. A dedicated
script was developed for this propose, which measures the time spent executing the
LAPACK subroutines and their memory consumption. It was found that only the
dsygv LAPACK subroutine requires additional allocation of memory, which however,
is negligible (~50–100 MB). Finally, the size of the input matrices for the production
will range between 20 GB and few TB. Therefore, all LAPACK subroutines must be
replaced by their parallel versions from other libraries like ScaLAPACK in order to
distribute the input/output matrices, and hence reduce the size of the local sub-
matrices.

Summarizing our tests, the complete STARWALL code must be adapted in order to
distribute the memory consumption. We estimated that the production run will require
about six to seven TB of physical memory that can be allocated by using about 100
computing nodes on the IFERC-CSC HELIOS computer.

2.1.2. Computational time analysis

The memory analysis has already shown the necessity of a complete domain
decomposition of the whole code. Additionally, it was also important to determine the
wall clock time for the production run and find the hot spots in the code. Fig. 4 shows
the STARWALL execution time for different amounts of triangles in the wall and
within the plasma (red and green lines). For a large scale production simulation on a
single CPU the wall clock time would be in the range of a year.

4

Fig. 4 The wall clock time versus the number of triangles in the wall (ntri_w) for different
numbers of triangles within the plasma: n_R=n_Z=15 shown as red line, n_R=n_Z=25 shown
as green line. The solid blue line shows the targeted numbers of triangles for a production
run, while the dashed blue line presents the extrapolated scaling.

The next step was to determine the most time consuming subroutines in the code.
This analysis was performed by means of the Allinea Forge profiling package.
Depending on the problem size different subroutines contribute to a different
percentage of the total execution time. However, among all subroutines, one (dsygv)
consumes in all cases more than 40% of the total wall clock time. For the largest
problem size we could run, the percentage was > 70%. Hence, this subroutine
became the first candidate for parallelization effort and improvement.

2.1.3. OpenMP parallelization analysis

STARWALL is partially parallelized by means of OpenMP directives. Its
parallelization efficiency is shown in Fig. 5. The wall clock time decreases by a factor
of 1.4 when 16 threads are involved in comparison to the sequential run. Such poor
performance can be explained by Amdahl’s law, which shows the maximal possible
speed-up of a program only partially parallelized. According to this law the maximal
speed-up factor we can expect is around two. For this estimate we have taken into
account that all LAPACK routines are sequential. With this assumption the sequential
parts of STARWALL add up to about 45 percent of the total execution time.

Fig. 5 Speed-up of the code versus number of OpenMP threads.

In order to confirm poor OpenMP parallelization scalability our model was checked
via the Intel Vtune performance profiler. The basic hot spots analysis is presented in

5

Fig. 6. One can see that for most of the time only one thread is performing
calculations (brown color), while the other 15 threads stay idle, as expected. Such
results confirm the necessity of a replacement of all sequential LAPACK subroutines
with their parallel analogues.

Fig. 6 Basic Hotspots analysis from the Intel Vtune amplifier using 16 OpenMP threads.
Brown color shows the working status of the process, while green color corresponds to the
idle state.

2.1.4. LAPACK subroutines

As it was discussed earlier the code spends most of the computational time in the
execution of the LAPACK subroutines. In this subsection we summarize all LAPACK
subroutines which are used in STARWALL:

 dpotrf – computes the lower-upper (LU) factorization of a tridiagonal matrix;
 dpotrs – solves a system of linear equations with a Cholesky factored

symmetric positive defined matrix;
 dgemm – computes a matrix-matrix product for general matrices;
 dsygv – computes all eigenvalues and corresponding eigenvectors of a real

generalized symmetric definite eigenproblem;
 dgetrf – computes the LU factorization of a general matrix;
 dgetri – computes the inverse of the LU factored general matrix.

2.1.5. Bug check

Before starting the optimization and parallelization the code was checked for
correctness. The run time debugging was performed with two different compilers:
Lahey and Intel. Afterwards the source code was also analyzed by the Forcheck
static analyzer.

Three uninitialized variables were found that could produce unexpected behavior of
the code:

1) In file solver.f90: nd_w=ncoil+npot_w
2) In file matrix_ec.f90: alv=pi2*fnv
3) In file resistive_wall_respones.f90: ntri_c

These problems were reported to the project coordinator and resolved afterwards.

The code was running mainly on a LINUX cluster called TOK-P, which is located at
RZG, Garching. During parallel simulations a bug was detected in the standard input
(stdin) system of this cluster. Within the default configuration only the process with
rank=0 reads data from the stdin. Adding the flag ‘-s all’ to mpirun should allow all
processes being involved in the computation to read data from standard input.
However, this flag was working only on a single node with all MPI tasks pinned. For
tests with two or more nodes the code got stuck at the stdin reading. The same tests

6

were performed on HELIOS using the same compiler and compile flags. In this case
the std reading worked properly. This bug was reported to the support team of the
TOK-P cluster at RZG. The problem was avoided by reading the input only on task 0
and communicating it to the other tasks.

2.2. MPI parallelization

2.2.1. Parallelization of the eigenvalue solver

The LAPACK subroutine used for the calculation of the eigenvalues and the
corresponding eigenvectors got the priority for parallelization. This subroutine
consumes more than 70% of the total STARWALL execution time and uses two large
matrices as input parameters. The subroutine is called dsygv and a more detailed
description can be found in Ref. [8]. This subroutine was replaced by its parallel
version PDSYGVX from the ScaLAPACK library that includes subroutines for linear
algebra computation on distributed memory computers supporting MPI [8].

The PDSYGVX subroutine includes 34 input/output parameters by means of which
the user can specify: the eigenvalue problem type to be solved, which eigenvalues
and eigenvectors must be computed, the calculation precision, etc. Prior the
calculation all global matrices must be distributed on process grid using a so called
block-cycling scheme [8].

In order to test the correctness of the implementation of the PDSYGVX subroutine
the calculated eigenvalues and the eigenvectors were compared with the results from
the original (sequential) subroutine dsygv. Fig. 7 shows the calculated eigenvalues
from both the dsygv (red points) and the PDSYGVX (green points) subroutines. In
the case of the ScaLAPACK subroutines 16 MPI processes distributed over 16
computational nodes (1 per node) were used. A very good agreement was found for
different problem sizes.

Fig. 7 Eigenvalues from the sequential LAPACK dsygv (red points) and the parallel
ScaLAPACK PDSYGVX (green points) subroutine.

In spite of the perfect agreement of the eigenvalues the calculated eigenvectors are
somehow unpredictable. For some problem sizes they are identical between the
dsygv and PDSYGVX subroutine. In other cases some eigenvectors have the same
length but point in opposite direction i.e. all their components are with opposite sign
(Fig. 8 on the left). They are still correct eigenvectors as can be seen in Fig. 8 on the
right, where the absolute values of all eigenvector components are shown. However,
sometimes eigenvectors have even different values of their components. Such
behavior can be explained by a not unique solution of the eigenvector problem. If
some eigenvalues are not distinct, i.e. the solution of the characteristic equation has
multiple roots, we say that these eigenvalues are degenerated. Different bases of

7

eigenvectors exist for these degenerate eigenvalues. Therefore, LAPACK and
ScaLAPACK can deliver different components for eigenvectors which correspond to
degenerate eigenvalues, but they still represent the right eigenvector.

In addition, the correctness of the new subroutine was checked by a comparison of
the physical solution for the eigenvectors from LAPACK and ScaLAPACK library. The
STARWALL results were in very good agreement within an absolute error of 10-13.

Fig. 8 Eigenvector components on the left, and their absolute values on the right, from the
sequential LAPACK routine dsygv (red points) and the parallel ScaLAPACK routine
PDSYGVX (green points).

The advantage of the ScaLAPACK library in comparison to LAPACK is that it benefits
from the IEEE ±∞ arithmetic to accelerate the computations of the eigenvalue solver.
Such improvement can be seen in Fig. 9 where the execution time of the
ScaLAPACK subroutine PDSYGVX obtained from the simulations using one task is
compared to the execution time of the LAPACK dsygv subroutine for different
problem sizes. The ScaLAPACK solver works faster than LAPACK for all problem
sizes and gains a factor more than two for large matrices.

Fig. 9 Comparison of the eigenvalue solver execution time between ScaLAPACK using one
process and the LAPACK library for different problem sizes.

The parallelization efficiency of the PDSYGVX subroutine is shown in Fig. 10 on the
left for a small problem size (ntri_w=10050) and on the right for large matrices
(ntri_w=51200). For an efficient ScaLAPACK performance the matrix size should be
large enough relative to the amount of processes being involved in the simulation [8].
Therefore, the parallelization efficiency is almost saturated with 16 processes for a
small problem size with an execution time of only a few seconds. However, when
large matrices are used the problem scales almost linearly. An even better
performance is expected for a production run in which ntri_w=500000.

8

Fig. 10 PDSYGVX parallelization efficiency. On the left, small problem size with
nwu=nwv=70; on the right, large problem size nwu=nwv=160.

2.2.2. Parallelization of the matrix_ww subroutine

The eigenvalue solver described above uses two large matrices
(a_ww(npot_w,npot_w) and b_rw(npot_w,npot_w)) as input parameters. The size of
these matrices for a large production run will be (250,000 × 250,000) that is 500 GB
for double precision components. Therefore, these matrices have to be distributed
over MPI tasks. We started the parallelization with the subroutine matrix_ww where
the matrix a_ww is built.

In this subroutine the matrix a_ww is calculated from another matrix, which is named
dima(ntri_w,ntri_w). The size of this additional matrix is even larger than the size of
the matrix a_ww, namely (500,000 × 500,000), that is 2 TB for the double precision
components. Thus, dima matrix must be also distributed over the MPI processes.

The original kernel loop that corresponds to the creation of the matrix a_ww is shown
in Fig. 11. One can see that the indexes of the matrix a_ww and dima are not linked.
The first one gets its indexes from the additional array ipot_w where values range
from 1 to npot_w, while the dima indexes can run from 1 to ntri_w.

We tried to find some patterns between the a_ww and dima matrices such to
determine which components of the dima matrix will be used for calculating the
equally distributed a_ww matrix. The a_ww matrix was distributed among 16
processors (Fig. 12 left). Each pink rectangle represents the global a_ww matrix, and
the yellow rectangles depict the sub-matrices assigned to each of the 16 new tasks.
The dima matrix indexes that were used to calculate the local distributed matrix
a_ww are shown in Fig. 12 on the right. Now, the pink rectangles stand for the global
dima matrix, whereas the yellow represent those indexes which are needed to
calculate the local part of sub-matrices a_ww (yellow rectangles on the left figure).
One can see that the dima components, which are used to build the distributed part
of a_ww are not localized and spread across the whole matrix. Hence, it would have
been very difficult to efficiently distribute the matrix dima.

9

Fig. 11 Original kernel loop that builds the matrix a_ww.

Fig. 12 Distributed matrix a_ww on 16 processors (left) and the corresponding indexes of the
matrix dima that are used to calculate the local part of a_ww (right).

2.2.2.1. Matrix free “dima” computation

As the distribution of the matrix dima could not be performed efficiently, we decided
to rewrite the code in such a way that components of the dima matrix will be
calculated directly in the place where they should be used.

In the original code version the matrix dima was pre-calculated by means of the
subroutine tri_induct, where three nested loops take place. If this subroutine would
be straightforwardly implemented in the kernel loop (Fig. 11), where it has already
four nested loops, computational time would be years even on computer clusters.
Therefore, we split this subroutine in three parts: tri_induct_1, tri_induct_2,
tri_induct_3. Two subroutines (tri_induct_1, tri_induct_2) are called outside the kernel
loop and have no significant effect on the total computational time. Inside the kernel
loop only one more nested loop with an index running over seven points was added.
A code fragment of the new version of the kernel loop is shown in Fig. 13. One can
see that the dima matrix is absent there. Instead, there is the function call
tri_induct_3, where the necessary value of dima is calculated and stored in the
variables dima_sca and dima_sca2.

The drawback of such a modification is the increase of the computational time. Fig.
14 shows the elapsed time of the kernel loop for different problem sizes using the old
version of the code with the matrix dima and the new version with the dima free
format. The computational time increases in about two times for all problem sizes.
For a large production run with ntri_w=500,000 it was estimated to be around 111

10

hours on one CPU. The advantage is naturally the possibility to distribute the array
and run in parallel.

The next step was to check the parallelization efficiency of the kernel loop. This test
is shown in Fig. 15. One can see that a speed-up factor of ~110 can be reached
when 256 tasks are involved for the problem size ntri_w=12800. Therefore, the
computational time of the kernel loop without the dima matrix using 256 cores would
be about one hour.

Fig. 13 Matrix dima free kernel loop that builds the matrix a_ww.

Fig. 14 Computational time of the kernel loop of the subroutine matrix_ww versus the problem
size using the old code version (with dima matrix) – blue line and modified kernel loop (with
dima free format) – orange line.

11

Fig. 15 Speed-up of the kernel loop versus number of MPI tasks. The problem size is

ntri_w=12800

2.2.2.2. Matrix free “dima” computation with ScaLAPACK indexing

In order to use the distributed matrices as input parameters for ScaLAPACK
subroutines they must be transformed to a special format using the so-called Block-
Cyclic distribution scheme, which should speed-up the calculation [8]. For example, if
we consider the global matrix with a size of 9×9, which is mapped onto a 2×3
process grid (six tasks) and with a blocking factor of two, the decomposition which is
shown in Fig. 16 has to be done. On can see that in this format different processes
have different local matrix sizes, from 5×4 for process (0,0) to 4×2 for process (1,2).
Moreover, the mapped indexes in the local distributed matrix are not sequential. For
instance, in the process (0,0) the first row includes the following elements of the
global matrix: a11, a12, a17, a18.

 0 1 2

0

a11 a12 a17 a18 a13 a14 a19 a15 a16

a21 a22 a27 a28 a23 a24 a29 a25 a26

a51 a52 a57 a58 a53 a54 a59 a55 a56

a61 a62 a67 a68 a63 a64 a69 a65 a66

a91 a92 a97 a98 a93 a94 a99 a95 a96

1

a31 a32 a37 a38 a33 a34 a39 a35 a36

a41 a42 a47 a48 a43 a44 a49 a45 a46

a71 a72 a77 a78 a73 a74 a79 a75 a76

a81 a82 a87 a88 a83 a84 a89 a85 a86

Fig. 16 Example of the Block-Cycling matrix distribution of size 9×9 into 2×2 blocks mapped
onto a 2×3 process grid.

Hence, the Block-Cyclic distribution scheme described above has to be implemented
in the subroutine matrix_ww in order to bring the local distributed matrix a_ww to a
format compatible with the ScaLAPACK subroutines. Such index mapping was
developed and implemented in two subroutines: ScaLAPACK_mapping_i,
ScaLAPACK_mapping_j and then inserted in the kernel loop. Such index distribution
causes bad scalability of the kernel loop when using the same structure shown in Fig.
13. Therefore, this kernel loop was rewritten one more time to ensure good scalability
with the ScaLAPACK mapping scheme (Fig. 17). Using 512 cores with the new

12

version a speed-up factor of 218 could be reached. The wall clock time was
estimated for a large production run with ntri_w=500,000 to be about 4 hours.

Fig. 17 ScaLAPACK index mapping dima free kernel loop that builds the matrix a_ww.

2.2.3. Parallelization of the matrix_pp subroutine

The next subroutine chosen for parallelization was matrix_pp. It produces the
intermediate matrix (a_pp) that will be used to calculate the input matrix for the
eigenvalue solver. This subroutine is similar to the matrix_ww described above. The
main difference lies in the construction of the dima matrix. It uses two additional
matrices dist1 and dist2 in order to calculate its components. The size of the dima
and the resulting matrix a_pp is also different from the previous subroutine, because
it corresponds to the number of triangles within the plasma that should be discretized
by ntri_p=200000 for a large production run. On one side, we got more complexity in
the kernel loop, on the other side, the loop is smaller in comparison to the kernel
matrix_ww.

The additional subroutine (get_index_dima) was developed in order to determine
which indexes of the matrix dima are used for computing the matrix a_pp
components. The kernel loop of this subroutine is shown in Fig. 18.

The scalability of this kernel loop, depicted in Fig. 18, is shown in Fig. 19. A speed-up
factor of 220 can be achieved when 512 cores are involved in the computation for the
problem size ntri_p=46080. For a large production run the wall clock time (with 512
cores and ntri_p=200,000) reduces to about 2 hours.

13

Fig. 18 ScaLAPACK index mapping dima free kernel loop that builds the matrix a_pp in
subroutine matrix_pp.

Fig. 19 Speed-up of the kernel loop in the matrix_pp subroutine versus number of MPI tasks.
The problem size is ntri_p=46080.

2.2.4. Parallelization of the matrix_wp subroutine

The matrix_wp subroutine is similar to the previously parallelized subroutines
matrix_ww and matrix_pp described above. The main difference lies in the presence
of two large matrices, dima and dimb, that have to be eliminated from the code in
order to save a significant amount of memory. Therefore, the components of these
two matrices have to be calculated directly in place rather than stored in memory.

14

Additionally, the a_wp matrix size (npot_w, npot_p) and the indexes of the kernel
loop (ntri_w, ntri_p) are also different from the previous subroutines.

The subroutine was successfully parallelized providing identical results as the original
version within an absolute difference of 10-10. The scalability of the subroutine is
shown in Fig. 20. A speed-up factor of 148 can be achieved when 256 cores are
involved in the computation. The subroutine was tested for a large production run
with ntri_p=2*105 and ntri_w=5*105. The execution time with 128 tasks was about 3.5
hours.

Fig. 20 Speed-up of the matrix_wp subroutine versus number of MPI tasks.

2.2.5. Parallelization of the matrix_rw subroutine

The parallelization of the matrix_rw subroutine was relatively straightforward in
comparison to the previous matrix_wp subroutine since it does not involve the large
matrices dima and dimb. The only problem was to bring the local matrix a_rw to the
ScaLAPACK matrix structure described earlier. The subroutine was successfully
parallelized providing accurate results within difference of ~10-10. The subroutine was
tested for a large production run with ntri_p=2*105 and ntri_w=5*105. The execution
time using 256 tasks was in the range of a few minutes.

2.2.6. Parallelization of the matrix_pe subroutine

The matrix_pe subroutine has a different kernel loop structure compared to all
previously parallelized subroutines. It is independent of the dima and dimb matrices
and the indexes of the kernel loop run from 1 to the number of harmonics (n_harm)
and to the number of boundary elements (N_bnd). The subroutine was parallelized
with high accuracy (absolute difference of ~10-10) and the output matrix (a_pwe) was
re-ordered to be compatible with the ScaLAPACK matrix structure. Because of much
smaller values of n_harm and N_bnd than ntri_p and ntri_w the execution time for
this subroutine is small (few minutes) for a production run.

2.2.7. Parallelization of the matrix_ep and matrix_ew
subroutines

The subroutines matrix_ep and matrix_ew have a similar structure with differences
only in the size of the main arrays (a_ep and a_ew). a_ep has the size of the
potential points for the plasma (npot_p) and a_ew of the potential points for the wall
(npot_w). All other loops and components are identical.

In the main body of these subroutines three additional supplying subroutines are
called. They are bfield_par, bfield_c and real_space2bezier. Moreover, inside the
subroutine real_space2bezier two LAPACK functions are executed (dpotrf and
dpotrs). The former computes the lower-upper (LU) factorization of a tridiagonal
matrix, while the latter solves a system of linear equations with a Cholesky factored
symmetric positive definite matrix. Fortunately, these functions use as input

15

parameters the matrices aa and t with dimensions (n_dof_bnd, n_dof_bnd). As the
variable n_dof_bnd is about 400 for a production run, the double precision arrays (aa
and t) will not represent more than 1.5 MB. Therefore, we left these LAPACK
functions untouched i.e. in the sequential version.

After the parallelization of the subroutines matrix_ep and matrix_ew, including the
inner supplying subroutines, the total computational time was measured for a
production run with ntri_w=500000. Using 256 tasks the wall clock time for the
matrix_ep was 51 s, while 15 s was necessary for computing the matrix_ew
subroutine.

2.2.8. Parallel matrix transpose

One part of the STARWALL solver recalculates the entries of the matrix a_pwe by
using values from the transposed matrix a_wp. In order to improve the code
performance this subroutine was replaced by the ScaLAPACK library function
PDTRAN that can be adapted for a matrix transpose. The wallclock time does not
exceed a few seconds for the production run.

2.2.9. Parallel LU factorization with linear system solver
Two LAPACK functions named dpotrf and dpotrs are executed after the a_pwe
matrix transpose. The first function computes the lower-upper (LU) factorization of a
tridiagonal matrix a_pp, while the second solves a system of linear equations with a
Cholesky factored symmetric positive definite matrix. Both functions were replaced
with their parallel counterpart from the ScaLAPACK library and grouped in the
subroutine cholesky_solver. The subroutine provides the correct result within an
absolute error of 10-10 in comparison with the sequential LAPACK version.

2.2.10. Parallelization of building matrix a_ee
The sequential version of the code for building the matrix a_ee is shown in Fig. 21.
As one can see this matrix is formed by the multiplication of the matrices a_ep and
a_pwe using only a small part of the elements of the matrix a_pwe. This loop was
replaced by the ScaLAPACK subroutine named PDGEMM that computes the matrix-
matrix product. However, before the execution of this subroutine the distributed
matrix a_pwe was rewritten to be used in the ScaLAPACK PDGEMM subroutine.
Finally, the parallel version of the building matrix a_ee was tested and it provided
correct results compared to the sequential version.

Fig. 21 Sequential version of building the matrix a_ee.

2.2.11. Parallelization of building matrices a_ew and a_we
Fig. 22 shows the sequential version of the building of the matrices a_ew and a_we.
The structure of these loops is similar to the one described in the previous section
with different sizes and indices. However, both loops can be replaced by the
ScaLAPACK subroutine for the matrix-matrix product (PDGEMM) as it was done for
building the matrix a_ee. Two new subroutines named a_ew_computing and
a_we_computing were created, which include the parallel building of the distributed
matrices a_ew and a_we, respectively.

16

Fig. 22 Sequential version of building the matrices a_ew and a_we.

2.2.12. Parallelization of the LAPACK dgemm subroutine
The last call of the STARWALL solver subroutine is the LAPACK dgemm subroutine
for the multiplication of the matrices a_wp and a_pwe. This subroutine was replaced
by its parallel counterpart from the ScaLAPACK library namely PDGEMM. The same
subroutine was used to build the matrices a_we, a_ew and a_ee. Therefore, its
implementation was relatively easy and required only a few additional ScaLAPACK
descriptors. The whole computation was encapsulated in the subroutine named
matrix_multiplication.

2.2.13. Parallelization of resistive_wall_response subroutine

The resistive_wall_response subroutine follows after the solver subroutine described
above. There are three main parts of this subroutine: (i) eigenvalue solver, (ii)
preparation of output matrices and (iii) printing of final results. The eigenvalue solver
has been parallelized in the very beginning of this project described in section 2.2.1.

After solving for the eigenvalues the output matrices a_ye, a_ey and d_ee are
computed. The sequential version of the calculation of these matrices is presented in
Fig. 23. As we can see the matrices a_ey and d_ee are computed by the matrix-
matrix multiplication scheme, while in order to calculate the matrix a_ye the
transpose of the matrix s_ww is required. All loops were successfully parallelized and
copied in three subroutines named a_ey_computing, a_ye_computing and
d_ee_computing.

The last part of the resistive_wall_response subroutine is printing the computed
matrices to the different output files. All matrices that were calculated in the parallel
version of the STARWALL code are distributed over the number of MPI tasks using
the ScaLAPACK block-cycling distribution scheme. Thus, the output subroutine
should match with the reading subroutine in the JOREK code that is not implemented
yet. Therefore, we did not modify the printing part of the code and postpone it until
the reading part in JOREK will be implemented in order to know the necessary output
format.

17

Fig. 23 Sequential version of computing the final matrices a_ye, a_ey and d_ee.

2.2.14. Parallelization of matrix s_ww inversion
The last computing subroutine of the STARWALL code, before printing out the final
results, performs the inversion of the eigenvectors matrix (s_ww). Two LAPACK
subroutines are used for this purpose. They were replaced by their parallel
counterpart from the ScaLAPACK library. First, the subroutine named PDGETRF
calculates the LU factorization of a general matrix using partial pivoting. Second,
PDGETRI computes the inverse of a matrix using LU factorization from the previous
step. Both subroutines were grouped in the subroutine named
computing_s_ww_inverse. The computational time of this subroutine was measured
to be of ~2805 s for a production run (ntri_p=2*105 and ntri_w=5*105).

2.2.15. Parallelization of input subroutines
Three input subroutines were also parallelized: control_boundary that reads the
JOREK control boundary data; tri_contr_surf that is used to generate the control
surface triangles and surface_wall that performs the discretization of the wall. These
subroutines were parallelized in such a way that only one master task reads the data
from the input files and broadcasts it to the tasks involved in the computation. An
additional subroutine named control_array_distribution was inserted after the reading
part. This subroutine controls and checks the distribution of the matrices among the
MPI tasks.

18

2.3. Parallel performance test
After the whole code was parallelized and tested for the correctness of the output
results we did a comparison of the code performance with respect to the original
version. The maximum possible problem size for the original code version which fits
into memory is the following: ntri_p=48000, ntri_w=65000, nharm=11 (57 GB memory
consumption). The wallclock time for such a simulation using 16 OpenMP processes
is ~4 hours. We performed a simulation with identical parameters but with the new
(MPI parallel) code version. In spite of the larger complexity of the solver due to the
new version of the matrix building subroutines, which avoids the storing of the largest
matrices in the code named dima and dimb, the total computational time (excluding
the output) on one computing node and 16 MPI tasks is about the same as it is in the
OpenMP version of ~4.2 hours consuming 41 GB of the memory. However, the
computational time is reduced to about 40 minutes when using eight compute nodes
and 128 MPI tasks. Nevertheless, for the small problem sizes which fit in the memory
of one node, the OpenMP version is faster than the parallel one with 16 MPI tasks.

Next step was to test the code performance for a typical production run with the
following parameters: ntri_p=202.240, ntri_w=500.000, nharm=11. Fig. 24 shows the
execution time of some subroutines from the parallel version of the STARWALL
code. For this test 2048 MPI tasks were used distributed among 128 compute nodes
on HELIOS. The execution time from all subroutines shown in Fig. 24 represents
99% of the total computational time that is about 11 hours. One can see that four
subroutines (matrix_pp, matrix_wp, matrix_ww and the eigenvalue solver –
simil_trafo), described in details above, consume most of the computational time.

Fig. 24 The wall clock time of some subroutines from the parallel version of the STARWALL
code for a production run with the following parameters: ntri_p=202.240, ntri_w=500.000,
nharm=11. The subroutines are listed in their execution order.

We gradually increased the problem size and determined the maximum possible run
within 128 nodes with the following parameters: ntri_p=202.240, ntri_w=551.250,
nharm=11 and a wallclock time about 13 hours.

19

2.3.1. Parametric scan of the ScaLAPACK blocking factor
It was mentioned above that the ScaLAPACK library requires a special matrix
distribution format (Block-Cyclic). The blocking size of such a format is defined by the
user, and it has a strong impact on the code performance. Fig. 25 shows the wall
clock time for a production run (ntri_p=202.240, ntri_w=500.000) of five subroutines,
that consume more than 95% of the total computational time, versus different sizes of
the ScaLAPACK blocking factor (from NB=2 to NB=256). Among these subroutines
are two from the ScaLAPACK library (matrix multiplication – DGEMM and the
eigenvalue solver – PDSYGVX) and three for the building matrices (matrix_pp,
matrix_wp, matrix_ww). One can see that the execution time of the ScaLAPACK
subroutines decreases using a higher blocking factor. For small blocking factors
(NB=2 or NB=4) the execution time of the eigenvalue solver is too large (>15 hours)
for the program to finish within 24 hours. Therefore, these points are not depicted in
Fig. 25. A significant reduction of the computational time is visible up to NB=64. After
that the execution time decreases but only by a few percent when it reaches
NB=128. With NB=256 the execution time of these subroutines begins to increase.
The computational time of the matrix building subroutines fluctuates for all blocking
factors. The total computational time (orange line) shows that the best performance
for such a problem size is ~11 hours with NB=64. This is in agreement with the
ScaLAPACK documentation where developers propose for the best performance to
use the following blocking factors NB=32, 64 or 128 [9]. However, for a different
problem size the best performance could be with a different blocking factor.
Therefore, the STARWALL input file was extended including now the blocking factor
as an input parameter.

Fig. 25 The wall clock time versus the ScaLAPACK blocking factor for a production run with
the following parameters: ntri_p=202.240, ntri_w=500.000, nharm=11.

2.3.2. Scalability test

We tested also how the total computational time scales according to the number of
MPI tasks involved in the calculation. We decreased the problem size to be able to
run it on a smaller number of compute nodes. Fig. 25 shows the wall clock time for a
production run (ntri_p=202.240, ntri_w=460.800) of the four subroutines, that
consume most of the total computational time, versus the number of MPI tasks. For
such a problem size the whole code can be executed on 64 nodes (1024 MPI tasks).
With a smaller number of nodes only a part of the code is performing due to the
memory limit. One can see that the wall clock time decreases for all subroutines up
to 128 nodes (2048 MPI tasks). Up to 4096 tasks the execution time of the
ScaLAPACK eigenvalue solver continues to shrink. However, the computational time
of the three matrix building subroutines starts to grow above 2048 tasks. We
detected that the optimal code performance could be reached by using 128 compute

20

nodes with a ScaLAPACK blocking factor of 64 for the production run described
above. For a larger or smaller problem size the scaling could be different.

Fig. 26 Scaling of the most time consuming subroutines in the STARWALL code.

The scalability of the whole program execution including the output was tested also
for a moderate problem size with ntri_p=48000, ntri_w=39200, nharm=11 (Fig. 27). A
speed-up factor of nine was achieved with 256 MPI tasks in comparison to 16 MPI
tasks. On a node, the original version is faster than the parallel one due to the much
more complex algorithm used for the matrix building subroutines that avoids to store
the largest matrix in the code named dima and dimb. However, with two nodes the
total wall clock time becomes smaller than in the original version and the speed-up
factor of six can be achieved with 256 MPI tasks in comparison to the original
version.

Fig. 27 Scaling of the total wallclock time in the STARWALL code for a small problem size
with ntri_p=48000, ntri_w=39200, nharm=11. The numbers next to the points are the task
number and computation time.

21

2.3.3. Temporary output
In the future a consistent format of the output of the STARWALL code and the input
of the JOREK code has to be chosen. After that both subroutines must be
parallelized. At the moment we use the same output format in the parallel version as
in the sequential one. This gives a limitation for the problem size resulting from the
output matrix size of no more than 3.5 GB due to the memory capacity of the node of
64 GB and assuming that we run 16 MPI tasks per node where each task should
allocate such output matrix.

2.4. Parallelization of the code version for magnetic coils
The standard code version does not include a calculation over the external magnetic
coils. However, in the future, this feature of the code must be usable for production
runs with a high number of finite element triangles. Therefore, it was decided to
parallelize the subroutines that deal with the magnetic coils. Among them are one
reading (read_coil_data) and five matrix building subroutines (matrix_cc, matrix_cp,
matrix_wc, matrix_rc, matrix_ec). All these subroutines have been successfully
parallelized providing identical results in comparison with the original code version.
Due to the project time limit the performance of these subroutines was not measured.
However, it is expected that including these additional subroutines will not increase
the wallclock time for a production run by more than 10–20 %. This is due to the
relative small matrix sizes being involved in the external coils calculation in
comparison to the matrices that were parallelized before.

22

3. MPI parallelization of the magnetohydrodynamics
code JOREK

The JORSTAR2 project is a continuation of the JORSTAR project described above
and dedicated to the implementation of parallel I/O in the STARWALL output and
JOREK input subroutines. The large STARWALL matrices are distributed over MPI
tasks to reduce memory consumption and to allow for running larger simulations in
terms of the JOREK computational grid and the number of triangles used in
STARWALL to discretize wall structures. A sequential part of JOREK in which the
input matrices from the STARWALL code are used has to be parallelized as well.

3.1. Goal of the project
Thanks to the JORSTAR project it is now possible to resolve the realistic wall
structure with a large number of finite element triangles in the STARWALL code.
However, the output subroutine is still sequential. This project concentrates on the
MPI parallelization of the sequential I/O part in both the JOREK and STARWALL
codes and adapting the JOREK code for using the STARWALL response matrices
now distributed over MPI tasks.

3.2. Parallelization of the STARWALL output subroutine
Before starting the implementation of the parallel I/O modules in both STARWALL
and JOREK a variety of libraries and subroutines were analyzed in order to find the
best candidate.

Most linear algebra subroutines were parallelized in the previous JORSTAR project
by means of the parallel ScaLAPACK library [10]. This library requires the so-called
block-cycling matrix distribution format described in detail in Sec. 2.2.2. Before they
can be used in an output procedure, all these matrices have to be converted to a
standard contiguous format. We first investigated if the ScaLAPACK library has a
suitable subroutine for parallel I/O with a direct conversion to this standard format.
Only one subroutine named PDLAPRNT was found. This subroutine collects all
distributed local matrices, converts them from the block-cycling distribution format to
the contiguous one and writes a global matrix. It could have been a straightforward
solution for our problem as everything in the STARWALL code is already prepared
for the ScaLAPACK library. However, after applying and testing this subroutine we
realized that it only works for small problem sizes. The subroutine is written in such a
way that only one MPI task locally collects all distributed matrices and afterwards
writes them to a file. This makes the output very slow and restricts the maximum
global matrix size to the memory capacity of one computing node or less (<180 GB
on the Skylake partition of the Marconi supercomputer). Therefore, this subroutine
does not meet our requirements as some global matrices of a STARWALL
production run can have sizes of about 500 GB.

The next step was to test the ROMIO library which is an implementation of the MPI
3.0 standard. This library includes many different MPI I/O subroutines which were
tested for our project. We started with MPI_File_seek, MPI_File_write and
MPI_File_write_at. The first subroutine seeks to the writing position, while the second
subroutine performs the writing itself. The last subroutine is a combination of the first
two. These subroutines were working fine and provided the correct output. However,
they are not collective routines which makes the output very slow for large problem
sizes (a couple of days for a matrix larger than 500 GB). Moreover, they require an
additional calculation for transforming the block-cycling distribution to the contiguous
format. Therefore, these subroutines are not suitable for our project.

Next, we tested the collective subroutine MPI_File_write_at_all, which has the same
functionality as the previously described subroutines with the difference that all MPI
tasks write simultaneously to a file. Again this subroutine works fine and much faster
than the previous ones but it also has one restriction. Each MPI task has to call it the

23

same number of times as it is a collective subroutine but sometimes the sizes of the
local distributed matrices are not identical for each MPI task. Therefore, in such
cases the subroutine gets stuck and the program deadlocks.

Finally, a solution was found by using the subroutines MPI_Type_create_darray and
MPI_File_set_view. The former creates a description of any complex data structure,
for example block-cycling distributed submatrices, while the latter defines an
independent file view for each MPI task. Therefore, each MPI task can write its own
specific data structure concurrently to the same file by means of a single call to the
MPI_File_write_at_all subroutine described before. This method works very fast for
any problem size and delivers correct results. Similar routines can be used in JOREK
to provide a different distribution of matrices over MPI tasks already when reading
them. This is described in the following section.

However, we decided to continue to investigate further possible candidates for our
problem and tested the parallel HDF5 library as it was already successfully used in
some parts of the JOREK code. We were able to achieve correct and fast
performance for equally distributed matrices (each submatrix has the same size).
However, we did not find a possibility by means of the HDF5 library to in parallel write
not equally block-cycling distributed matrices. Therefore, we kept the solution
described in the previous paragraph.

3.2.1. STARWALL parallel I/O performance test
After implementing the solution for each output matrix in STARWALL, performance
measurements were conducted. Different problem sizes as well as different numbers
of computing nodes involved in the writing process were tested. All tests were done
on the Broadwell partition of the Marconi supercomputer, which offers 36 cores per
node. The wall clock time for the complete output was about 83 seconds for a
moderate problem size with ntri_w=120,000 finite element triangles in the wall using
two computing nodes. The output file size for this case was about 110 GB. Only ~100
seconds were needed for a production run output with ntri_w=500,000 and
ntri_p=202,000 using 64 computing nodes creating a file with a size of about 1 TB. A
complete STARWALL production run, including all computations and output
procedures, with ntri_w=500,000 and ntri_p=200,000 using 64 computing nodes
takes about nine hours. This is much less time than is required by the project
coordinator (<24 hours). At this step all work concerning the STARWALL code is
finished.

3.3. Parallelization of the JOREK input subroutine
The same solution that was used for the STARWALL output was applied to the
JOREK input subroutine including only small modifications which are described here.
The global matrices should not be read from the input file (i.e. the STARWALL output
file) in the block-cycling distribution format but in an ordinary way using a row– or a
column–wise distribution. Therefore, instead of the MPI_Type_create_darray
subroutine, the MPI_Type_create_subarray subroutine was used. The data structure
of the matrices was also modified. Instead of using a simple allocatable array, we
introduced a data type that includes local allocatable submatrices, the starting and
ending indices of the global matrix and the type of distribution (column–or row–wise).

Results obtained from the new parallel reading subroutine were compared with the
old sequential version. They were identical up to a relative error of ~10-13. Afterwards
the execution time of the whole reading procedure for the production run
(ntri_w=500,000, ntri_p=200,000) was measured. Using 16 computing nodes and 36
MPI tasks per node the wall clock time was less than one minute.

3.4. Restrictions of the Intel MPI 3.0 library
One important limitation in the subroutines MPI_File_write_at_all and
MPI_File_read_at_all was found during the development of the parallel MPI I/O. The

24

amount of elements to be read/written from/to a file by each MPI task is an input
parameter for both subroutines. According to the Intel MPI documentation [11] this
variable is a four byte integer that can have a maximum value of 2147483647. This
corresponds to approximately two GB of data. For double precision (eight bytes per
value) arrays, which are used in our codes, the maximum size of data that can be
read/written by each MPI task is limited to 2147483647*8 bytes ≈ 16 GB. This means
that if an array size is larger than number_of_MPI_tasks*16 GB the code will fail. For
a production run, the largest output matrix uses about 500 GB. Therefore, we need a
minimum of 32 MPI tasks in order to overcome this limitation and to perform the
correct reading/writing procedure. The next MPI standard, 4.0, should correct this
limitation by changing the data type of the count variable. However, it was decided to
introduce modifications in the reading subroutine in order to avoid this limitation. If
the local matrix size is larger than 16 GB, the reading procedure will be performed in
several steps, reading a data chunk that is less than 16 GB on each step.

As described above, and according to the MPI 3.0 standard, it should be possible to
read 16 GB of data per MPI task in one operation for a double precision array.
However, in the Intel MPI implementation of these subroutines, the variable count is
multiplied by the type of the read array (eight for double precision) and the result of
this operation is stored in a four byte integer variable. Therefore, if we try to read the
maximum possible amount of elements (2147483647) for a double precision data
type the code crashes with a segmentation fault. As long as this bug is present in the
Intel MPI library we need to restrict our reading chunk size to less than two GB. This
bug was reported to the Intel support team [12] and should be fixed in the next
version of the library.

Additional modifications were made which ensure that each MPI task can read a
large submatrix (> 2 GB) without any errors, circumventing the bug in the Intel MPI
library.

3.5. Parallelization of the JOREK subroutines
After the JOREK parallel input was successfully developed and tested the rest of the
code that uses the distributed matrices from STARWALL had to be parallelized as
well. This mainly concerns the parallelization of the linear algebra operations.

3.5.1. Data structure of distributed matrices

A new data structure (Fig. 28) was introduced in JOREK in order to encapsulate
properties of a distributed matrix. loc_mat represents the local chunk (two
dimensional array) of a distributed matrix. distrib tells us if a matrix is distributed or
not. row_wise shows the type of the distribution: if row_wise=.true. the matrix is
distributed row–wise; if row_wise=.false. the matrix is distributed column–wise.
ind_start and ind_end denote the starting and ending indices of the current chunk in
the global matrix. step is the chunk size of the local matrix. dim defines the global
matrix dimensions.

Fig. 28 Data structure for a distributed matrix.

25

3.5.2. Parallelization of the update_response subroutine

This subroutine constitutes most of the linear algebra calculations in the code that
had to be parallelized. The most time consuming operation, which appears in many
places in the code, is a generalized matrix-matrix multiplication. This operation needs
to be done for different combinations of distributed matrices. For clarification we take
the following example from the code:

response_m_e(:,:) = sr%a_ee(:,:) + matmul(sr%a_ey(:,:), response_m_a(:,:)).

Four matrices are used in this example: response_m_e, a_ee, a_ey and
response_m_a. A matrix-matrix multiplication is performed between the a_ey and
response_m_a matrices by using the standard sequential matmul subroutine. The
resulting matrix is added to the matrix a_ee and finally saved as the response_m_e
matrix. The difficulty is that the matrices can be distributed using different patterns
(row–wise or column–wise). In addition, some small matrices in the code stay
unmodified (they are not distributed). In our example, the matrices a_ee and a_ey
are distributed via a row–wise pattern, the matrix response_m_a is distributed via a
column–wise pattern and the matrix response_m_e is not distributed at all. There are
many matrix-matrix multiplications in the JOREK code and their participating matrices
have different distributions and different orders. Therefore, a suitable parallel matrix-
matrix multiplication subroutine is required covering the whole spectrum of distributed
(column– or row–wise) or non distributed matrices. Such a subroutine named
matrix_multiplication was successfully developed. The subroutine works for all types
of distributed matrices and generates identical results in comparison with the original
code version.

Finally, the complete update_response subroutine was parallelized including the
matrix-matrix operations as well as the matrix-vector calculations and matrix
reassignments.

3.5.3. Parallelization of the remaining part of the JOREK code

The JOREK subroutines that include distributed matrices were parallelized next. We
will not report in detail about each subroutine, because the parallelization procedure
and the type of parallelization were very similar. The main difficulty was with
sequential subroutines that were only called by the master MPI task. In the parallel
version all tasks must call and enter these subroutines and corresponding changes
for a correct execution were performed.

Here is a list of all subroutines which were parallelized: get_vacuum_response,
read_starwall_response, broadcast_starwall_response, log_starwall_response,
update_response, coil_current_source, evolve_wall_currents,
reconstruct_triangle_potentials, equilibrium, poisson, boundary_check,
vacuum_equil, vacuum_boundary_integral.

The accuracy of the modified subroutines was compared with the accuracy of the
subroutines in the original code version. Both code versions (original and parallel)
provide the same results with a relative error of 10-11.

The parallel code version was also successfully tested for a production run using
input matrices from STARWALL with a size of around 500 GB.

3.5.4. OpenMP parallelization of the matrix multiplication
subroutine

During the performance tests described below it became clear that the matrix
multiplication subroutine takes most of the computational time inside the
read_starwall_response and update_response subroutines. Therefore, it was
decided to implement an OpenMP parallelization on top of the MPI parallelization.

Results obtained from the new MPI+OpenMP subroutine were compared with the old
MPI version. They were identical up to a relative error of ~10-12. Afterwards the

26

execution time of the multiplication of the two largest matrices in the code was
measured. This test had the following parameters: n_tor=11, n_period=1,
n_plane=32, n_har=6, n_pol=160, nwu=nwv=300 and ntri_w=180000. Using 18
computing nodes and 2 MPI tasks per node with 24 OpenMP threads the wall clock
time was 6.6 s. This is 16.7 times faster in comparison to the old MPI version
(110.7 s).

3.6. Bugs in the original code version
During the parallelization of the JOREK code a few bugs were found in the original
code version and reported to the project coordinator. Among them use of uninitialized
variables and wrong parameters in subroutines:

1) The variables heat_src and part_src in the file diagnostic/integrals.f90 were
without initialization for certain conditions.

2) In the file vacuum/vacuum_response.f90 the variables: old_thick, old_res,
old_tstep, old_theta, old_zeta, old_reswall were used without initialization.
The main difficulty was that all these variables have the “save” attribute and
the standard Intel Fortran debugging flag (-check uninit) can’t detect them.

3) The variable vertical_FB in the file models/equilibrium.f90 was also used
without initialization for certain conditions.

4) A wrong parameter was used in the subroutine integrals. Instead of using the
variable psi_bnd the variable psi_lim was used. This caused wrong output
results for one particular diagnostics of the JOREK code.

A few bugs were also found in the JOREK regression tests:

1) In the file diagnostics/rst_hdf52bin.f90 and diagnostics/rst_bin2hdf5.f90 a call
to the initialization subroutine update_time_evol_params was missing.

2) One minor bug is still not resolved in the regression test named
freebound_equil_aug: “forrtl: error (65): floating invalid” appears for the
following line: write(11,'(8e16.8)') surface_list%psi_values(i), dp_int/sum_dl,
zjz_int/sum_dl, F0 * q / (2.d0 * PI). The project coordinator will resolve this
issue after the current project.

3.7. Merging different JOREK development branches
At the end of the project three branches of the JOREK code: (i) develop – the main
branch, (ii) feature/IMAS-668 – the branch for the current project and (iii)
feature/IMAS-961-speed-up-boundary-int – the branch for speeding up the two most
time consuming subroutines (implemented by the project coordinator) were merged.
The resulting code version was tested for accuracy and performance (results are
presented in the next section). Finally, a pull request on the git system was initiated
in order to assign this code version as the main develop version.

3.8. Performance tests
In this section we compare the performance of the most important JOREK
subroutines for three code versions: (i) develop – the main version; (ii) the speed up
version described in Sec. 3.7 and (iii) the merge of develop, speed up and the
version for the current project (JORSTAR2). Table 1 shows the execution time of
three different test cases for these three code versions.

One can see that the total wall clock time (last column) from the original develop
version is much higher (depending on the test case) in comparison to the speed up
and merge versions. For test case number three the develop version did not even
finish within 24 hours of computation. On the other hand the speed up and merge
versions provide very similar results for the test cases one and two. For test case
number one the speed up version is a little bit faster in comparison to the merge
version, while for test case number two the merge version takes the lead. Only the

27

merge version is able to run very large problem sizes due to the STARWALL
response matrices being distributed over all MPI tasks.

The performance improvement was mainly achieved in two subroutines named
vacuum_boundary_integral and global_matrix_structure_vacuum. The computational
algorithm was changed for the latter subroutine in a way which prevents an execution
of the subroutine inside a loop. Therefore, it is called only once in the merge and the
speed up version and 23 times in the develop version. One can also see the
important improvement of the vacuum_boundary_integral subroutine, where the wall
clock time of the develop version is 200–770 times higher in comparison to the wall
clock time of the merge and the speed up version. This improvement was mainly
achieved by reordering some nested loops (there are a total of 12 nested loops)
inside an OpenMP region.

The boundary_check subroutine was in some cases slower in the merge version in
comparison to the develop and/or speed up version. Therefore, it was decided to
implement an OpenMP parallelization for it as well. The project coordinator was
responsible for this part. The subroutine after the improvement is about one order of
magnitude faster using 48 OpenMP tasks in comparison to the original version.

The merge code version works as fast as the speed up version and much faster than
the original develop version. Moreover, the merge version can perform calculations
with larger matrices due to the MPI parallelization and a global matrix distribution of
the vacuum_response part of the JOREK code. This is the reason why test case
number three fails in the develop and speed up version due to memory limitations.
On the other hand, the merge version executes this test case without any problems.

28

1) Test case: n_tor=21, n_period=1, n_plane=64, n_har=11, n_pol=120,
nwu=nwv=64, MPI=11, compute_nodes=11, OMP=48

Code
version

vacuum
boundary
integral

boundary
check

update
response

global_matrix
structure
vacuum

complete
code

develop 2329,27 3,44 21,55 8,74*23 54903

speed up 5,89 1,04 21,01 0,62 1177

merge 4,57 4,63 12,49 0,60 1308

2) Test case: n_tor=21, n_period=1, n_plane=64, n_har=11, n_pol=160,
nwu=nwv=64, MPI=11, compute_nodes=11, OMP=48

Code
version

vacuum
boundary
integral

boundary
check

update
response

global_matrix
structure
vacuum

complete
code

develop 11147,05 8,74 92,05 19,46*10 >24 hours

speed up 14,45 2,53 37,81 1,19 1883

merge 9,91 6,20 22,54 1,03 1649

3) Test case: n_tor=11, n_period=1, n_plane=32, n_har=6, n_pol=160,
nwu=nwv=330, MPI=48, compute_nodes=24, OMP=24

Code
version

vacuum
boundary
integral

boundary
check

update
response

global_matrix
structure
vacuum

complete
code

develop Not enough memory

speed up Not enough memory

merge 1,35 9,52 213,80 0,29 2385,00

All values are given in seconds

Table 1. The wall clock time in seconds of the most important JOREK subroutines for three
different test cases for three code versions.

3.9. Scalability tests
We also tested how the computational time scales for the final merge version for
different parameters of the code. Fig. 29 shows the wall clock time versus (a) the
number of finite element triangles representing the wall, (b) versus the number of
MPI tasks and (c) versus the number of the nodes in the poloidal direction in the
JOREK grid. In test (a) we kept the number of MPI tasks=12 and n_pol=200
constant; in test (b) we set ntri_w=100,000 and n_pol=200 and in test (c) we used
MPI tasks=12 and n_pol =200.

The total computational time for all test cases (even for production runs with
ntri_w=300,000 or n_pol=300) and for any presented subroutine is not longer than 70
seconds. These results are satisfactory as all these subroutines, except for the
boundary_check, are called only once. The boundary_check subroutine is executed
inside a small loop, however the calculation time of this subroutine is less than two
seconds for a large production run which makes its influence on the total
computational time relatively small. Besides, the parallelized read_starwall_response
and matrix-matrix multiplication subroutine scale quite well. All obtained data, which
is used for Fig. 29, is summarized in Table 2.

29

Fig. 29 Computational time in seconds of some JOREK subroutines versus different
parameters of the code. The following constant parameters were used in all calculations:
n_tor=11, n_period=1, n_plane=32, n_har=6.

MPI ntri_w n_pol
read starwall

response
update

response
Matrix–matrix
multiplication

boundary
check

12 10,000 200 1,19 19,65 9,06 0,10
12 30,000 200 1,20 21,19 9,74 0,22
12 100,000 200 7,24 31,77 14,88 0,88
12 300,000 200 35,03 57,33 27,72 1,81
6 100,000 200 9,96 68,47 34,32 0,64

24 100,000 200 19,93 15,68 8,91 0,62
12 100,000 100 6,47 8,18 3,68 0,32
12 100,000 300 7,64 75,20 36,32 1,06

Table 2 Computational time in seconds of the four parallelized subroutines in the JOREK-
STARWALL part.

The execution time of one time step in the global loop was measured in the JOREK
code with and without the STARWALL part in order to estimate the overhead of this
part of the code (Fig. 30). The time of the JOREK-STARWALL run is about a factor of
two higher in comparison to the pure JOREK run. It grows with increasing problem
size, while the JOREK part stays constant (a). This is because the tested parameter
(ntri_w) has no influence on the JOREK part.

There are five nested subroutines in the JOREK-STARWALL part:
construct_matrix → vacuum_baundary_integral → evolve_wall_currents →
write_wall_vtk → reconstruct_triangle_potentials. It was measured that the time
difference between the pure JOREK and the JOREK-STARWALL code version came
mainly from the last two subroutines reconstruct_triangle_potentials and
write_wall_vtk. For example, the execution time of the write_wall_vtk subroutine for
the test case Fig. 30 (a) with ntri_w=300,000 is 21 seconds. In comparison the kernel
loop of the vacuum_baundary_integral subroutine for this test case takes about two
seconds. Thus, write_wall_vtk can be the first candidate for a future code
optimization. All obtained data, which is used for Fig. 30, is summarized also in Table
3.

30

Fig. 30 Computational time in seconds of one global loop step in the JOREK code with the
STARWALL part (dashed blue line) and without (solid red line) versus different parameters of
the code. The following constant parameters were used in all calculations: n_tor=11,
n_period=1, n_plane=32, n_har=6.

MPI ntri_w n_pol JOREK
JOREK–

STARWALL
12 10,000 200 11,85 17,88
12 30,000 200 12,42 19,69
12 100,000 200 11,37 23,60
12 300,000 200 12,29 42,00
6 100,000 200 21,05 32,92

24 100,000 200 7,27 21,27
12 100,000 100 6,75 14,85
12 100,000 300 17,17 33,60

Table 3 Computational time in seconds of one global loop step in the pure JOREK and
JOREK–STARWALL version.

Additionally, a prediction for the memory consumption (total and per MPI task) was
implemented in JOREK and STARWALL to help the user to choose the appropriate
number of MPI tasks.

4. Conclusions
The STARWALL code has been analyzed for potential improvements and
optimization by means of MPI parallel computation. It was found that for a large
production run the whole code must be parallelized due to the lack of memory for
saving the input/output matrices and due to the computational time.

All sequential LAPACK subroutines were analyzed and selected for replacement by
their parallel analogues from the ScaLAPACK library. All these subroutines were
replaced in the final code version because of the required large input matrices size.

The LAPACK subroutine for the eigenvector solver was replaced by the parallel
subroutine counterpart from the ScaLAPACK library. A very good agreement was
found in terms of the eigenvalues. In addition, the correctness of the results was
proven by their consistency with the underlying physical model. The ScaLAPACK
subroutine has shown better performance not only by using several processes in
parallel but also in sequential mode due to the advantage of using IEEE arithmetics
(optimization of arithmetic operation with ∞) [9, page 121]. Finally, good
parallelization efficiency was obtained for this subroutine for large problem sizes.

The subroutines matrix_ww, matrix_pp, matrix_wp and tri_induct were re-written in
order to avoid the storage of the largest matrices in the code named dima and
similar. This allows to save significant fraction of the memory that will bring the
opportunity to perform calculations for larger problem sizes. The subroutines were
parallelized with MPI taking into account the specific output index format for matrices
which is necessary for ScaLAPACK subroutines. A good scalability was achieved for

31

all subroutines with a speed-up factor of more than 210 when 512 cores were
involved in the computation.

Finally, the complete code was parallelized including all LAPACK and user written
subroutines. The new parallel version of the code provides identical results in
comparison with the original code. This includes the part of the code handling the
magnetic coils. The parallelized version allows production runs with much larger
numbers of finite elements that allows to resolve realistic wall structure. The
simulation time in such a case is less then 12 hours using 128 computing nodes on
HELIOS.

Different libraries (e.g. ScaLAPACK, HDF5 and MPI) were analyzed in order to find
the best possible solution for parallel I/O. The MPI library was chosen as it can
directly translate the format of the output submatrices from the block-cycling
distribution to an ordinary format during the writing procedure.

MPI parallel I/O was implemented in both the STARWALL output and the JOREK
input subroutines. The execution time of the complete reading and writing procedure
for a production run is only up to a few minutes when using 16 and 64 computing
nodes.

During the development, a bug was found in the Intel MPI library that significantly
limits the size of the read/written data per operation. It was reported to the Intel
support team and should be corrected within the next version of the library. In order
to be able to work with large matrices and to overcome this bug, several subroutines
were modified using a workaround.

All sequential subroutines in JOREK that use distributed matrices from the
STARWALL input file were parallelized and tested. All of them provide identical
results in comparison to the original code version.

The final version of the code, achieved during this project, was merged with the
develop branch and with the speed up version of the code (where loops had been re-
ordered in order to speed up the code). The final code version provides results much
faster than the develop version and can work with very large matrices from
STARWALL output.

Acknowledgment
This work has been carried out within the framework of the EUROfusion Consortium
and has received funding from the Euratom research and training programme 2014-
2018 under grant agreement No 633053. The views and opinions expressed herein
do not necessarily reflect those of the European Commission. Part of this work was
carried out using the HELIOS supercomputer system at the Computational
Simulation Centre of the International Fusion Energy Research Centre (IFERC-CSC),
Aomori, Japan and the Marconi supercomputer system at the CINECA research
center, Bologna, Italy.

References
[1] Huysmans G.T.A. and Czarny O. MHD stability in X-point geometry: simulation of

ELMs NF 47, 659 (2007)
[2] Czarny O. and Huysmans G. Bézier surfaces and finite elements for MHD

simulations JCP 227, 7423 (2008)
[3] Hoelzl M., Merkel. P., Huysmans G.T.A., Nardon E., McAdams R., Chapman I.

Coupling the JOREK and STARWALL Codes for Non-linear Resistive-wall
Simulations. Journal of Physics: Conference Series, 401, 012010 (2012)

[4] Merkel P and Sempf M 2006 Proc. 21st IAEA Fusion Energy Conf. (Chengdu,
China) TH/P3-8; URL

http://www-naweb.iaea.org/napc/physics/FEC/FEC2006/papers/th_p3-8.pdf
[5] Merkel P., Strumberger E., Linear MHD stability studies with the STARWALL code

arXiv:150804911 (2015)

32

[6] Hoelzl M., Huijsmans G.T.A., Merkel P., Atanasiu C., Lackner K., Nardon E.,
Aleynikova K., Liu F., Strumberger E., McAdams R., Chapman I., Fil A. Non-
Linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current
Effects and Perspectives for the Extension to Halo Currents. Journal of Physics:
Conference Series 561, 012011 (2014).

[7] Artola F.J., Huijsmans G.T.A., Hoelzl M., Beyer P., Loarte A., Gribov Y. Non-linear
magnetohydrodynamic simulations of Edge Localised Modes triggering via
vertical oscillations. Nuclear Fusion (in preparation).

[8] https://software.intel.com/en-us/node/521158
[9] Blackford L. S., Choi J., Cleary A., D'Azevedo E., Demmel J., Dhillon I., Dongarra

J., Hammarling S., Henry G., Petitet A., Stanley K., Walker D., Whaley R. C.,
ScaLAPACK Users’ Guide, University of Tennessee and Oak Ride National
Laboratory

[10] http://www.netlib.org/scalapack/
[11] http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
[12] https://software.intel.com/en-us/forums/intel-clusters-and-hpc-

technology/topic/737449
[13] McAdams R., PhD thesis, Non-linear Magnetohydrodynamic Instabilities in

Advanced Tokamak Plasmas, York University (2014)
http://etheses.whiterose.ac.uk/7723/

