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1. Introduction 
Large scale plasma instabilities inside a tokamak can be influenced by the currents 
flowing in the conducting vessel wall. This involves non linear plasma dynamics and 
its interaction with the wall current. In order to study this problem the code that solves 
the magneto-hydrodynamic (MHD) equations, called JOREK [1,2], was coupled [3] 
with the model for the vacuum region and the resistive conducting structure named 
STARWALL [4,5]. The JOREK-STARWALL model has been already applied to 
perform simulations of Vertical Displacement Events (VDEs) [6], Resistive Wall 
Modes (RWMs) [13], Quiescent H-Mode [6], and vertical kick ELM triggering [7]. 

At the beginning of the project it was not possible to resolve the realistic wall 
structure with a large number of finite element triangles due to the huge consumption 
of memory and wall clock time by STARWALL and the corresponding coupling 
routine in JOREK. Moreover, both the STARWALL code and the JOREK coupling 
routine were only partially parallelized via OpenMP. The aim of this project is to 
implement an MPI parallelization to reduce memory consumption and execution time 
such that simulations with large resolutions become possible. 

The project JORSTAR is concerned with the MPI parallelization of STARWALL 
(chapter 2). In the project JORSTAR2, the implementation of parallel I/O in JOREK 
and STARWALL for the STARWALL response matrices, and the parallelization of the 
JOREK-STARWALL coupling terms inside JOREK are addressed (chapter 3). 

2. MPI parallelization of the resistive wall code 
STARWALL  

2.1. STARWALL code analysis  
It was important to determine the most critical data structures and subroutines that 
consume most of the memory and execution time before starting the implementation 
of the MPI parallelization. The memory consumption and the execution time for 
individual subroutines concerning different problem sizes can be controlled by tuning 
three knobs, which directly influence the problem size (a test case with a closed 
axisymmetric wall is considered): 

 Number of triangles representing the boundary of the JOREK computational 
domain: 
ntri_p = 4*nv*n_points*2*(n_R+n_Z-2)  

 Number of triangles in the wall: ntri_w = 2*nwu*nwv 
 Number of sin/cos harmonics: n_harm 

We changed the problem size by varying the following parameters independently: 
(i) n_R and n_Z for ntri_p, (ii) nwu and nwv for ntri_w, and (iii) n_harm. A large scale 
production run should finally correspond to the parameters: ntri_p=2*105, 
ntri_w=5*105, n_harm=11.  

2.1.1. Memory consumption analysis   

Fig. 1 shows the memory consumption of the most important individual subroutines 
during the scan of the parameter ntri_w by varying the variables nwu and nwv. For 
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this test case we fixed n_harm=1, n_R=n_Z=15, nv=32, and n_points=10. One can 
see that three subroutines (matrix_wp, matrix_ww, and resistive_wall_response) are 
the most memory demanding in this scan. Moreover, if we further scale our problem 
to a production size run with nwu=nwv=500 (ntri_w=500000) five additional 
subroutines (matrix_rw, solver, dsygv, matrix_ew, matrix_pe) will consume more than 
50 GB memory. Therefore, all these subroutines must be parallelized in the final 
version of the code. 

Fig. 2 represents the memory consumption of the same subroutines as it was shown 
in Fig. 1, however, this time with a parametric scan in the number of triangles within 
the plasma (ntri_p). In this test we kept the following parameters constant 
nwu=nwv=110, n_harm=1 but changed n_R=n_Z. The memory consumption 
increased mainly in three subroutines (matrix_pp, matrix_wp, and matrix_ep), which 
should be parallelized for a production run with ntri_p=2*105. 

 
Fig. 1 The memory consumption of individual subroutines of the STARWALL code during the 
scan over the number of the triangles discretizing the wall (ntri_w=2*nwu*nwv). 

 
Fig. 2 The memory consumption of individual subroutines of  the STARWALL code during the 
scan over the number of the triangles within the plasma (ntri_p). 

The last parameter tested was the number of sin/cos harmonics (n_harm). Fig. 3 
shows the memory consumption per subroutine versus n_harm, which varies from 
one to eleven. The value n_harm=11 corresponds to a production run. For this 
testcase we kept the following parameters constant: nwu=nwv=80, n_R=n_Z=15. All 
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subroutines stay almost at the same level of memory consumption with only an 
insignificant growth for some subroutines. In order to prove that the number of 
sin/cos harmonics will not have a large influence on the memory consumption, whilst 
the number of triangles is increased, we performed an additional test with 
nwu=nwv=110. Indeed, as in the test above, the memory usage did not change much 
during the n_harm scan.  

 
Fig. 3  The memory consumption of individual subroutines of the STARWALL code during a 
scan over the number of sin/cos harmonics. 

STARWALL uses six subroutines (dpotrf, dpotrs, dgemm, dsygv, dgetrf, dgetri) from 
the linear algebra package LAPACK that is part of Intel the MKL library. It was 
important to check both, the size of the input matrices of these subroutines and the 
additional memory allocation inside the subroutines in order to determine if we should 
also replace these sequential subroutines by their parallel analogues. A dedicated 
script was developed for this propose, which measures the time spent executing the 
LAPACK subroutines and their memory consumption. It was found that only the 
dsygv LAPACK subroutine requires additional allocation of memory, which however, 
is negligible (~50–100 MB). Finally, the size of the input matrices for the production 
will range between 20 GB and few TB. Therefore, all LAPACK subroutines must be 
replaced by their parallel versions from other libraries like ScaLAPACK in order to 
distribute the input/output matrices, and hence reduce the size of the local sub-
matrices.  

Summarizing our tests, the complete STARWALL code must be adapted in order to 
distribute the memory consumption. We estimated that the production run will require 
about six to seven TB of physical memory that can be allocated by using about 100 
computing nodes on the IFERC-CSC HELIOS computer.  

2.1.2. Computational time analysis  

The memory analysis has already shown the necessity of a complete domain 
decomposition of the whole code. Additionally, it was also important to determine the 
wall clock time for the production run and find the hot spots in the code. Fig. 4 shows 
the STARWALL execution time for different amounts of triangles in the wall and 
within the plasma (red and green lines). For a large scale production simulation on a 
single CPU the wall clock time would be in the range of a year.   
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Fig. 4 The wall clock time versus the number of triangles in the wall (ntri_w) for different 
numbers of triangles within the plasma: n_R=n_Z=15 shown as red line, n_R=n_Z=25 shown 
as green line. The solid blue line shows the targeted numbers of triangles for a production 
run, while the dashed blue line presents the extrapolated scaling.  

The next step was to determine the most time consuming subroutines in the code. 
This analysis was performed by means of the Allinea Forge profiling package. 
Depending on the problem size different subroutines contribute to a different 
percentage of the total execution time. However, among all subroutines, one (dsygv) 
consumes in all cases more than 40% of the total wall clock time. For the largest 
problem size we could run, the percentage was > 70%. Hence, this subroutine 
became the first candidate for parallelization effort and improvement. 

2.1.3. OpenMP parallelization analysis 

STARWALL is partially parallelized by means of OpenMP directives. Its 
parallelization efficiency is shown in Fig. 5. The wall clock time decreases by a factor 
of 1.4 when 16 threads are involved in comparison to the sequential run. Such poor 
performance can be explained by Amdahl’s law, which shows the maximal possible 
speed-up of a program only partially parallelized. According to this law the maximal 
speed-up factor we can expect is around two. For this estimate we have taken into 
account that all LAPACK routines are sequential. With this assumption the sequential 
parts of STARWALL add up to about 45 percent of the total execution time.   

 
Fig. 5 Speed-up of the code versus number of OpenMP threads.  

In order to confirm poor OpenMP parallelization scalability our model was checked 
via the Intel Vtune performance profiler. The basic hot spots analysis is presented in 
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Fig. 6. One can see that for most of the time only one thread is performing 
calculations (brown color), while the other 15 threads stay idle, as expected. Such 
results confirm the necessity of a replacement of all sequential LAPACK subroutines 
with their parallel analogues.    

 
 
Fig. 6 Basic Hotspots analysis from the Intel Vtune amplifier using 16 OpenMP threads. 
Brown color shows the working status of the process, while green color corresponds to the 
idle state.  

2.1.4. LAPACK subroutines 

As it was discussed earlier the code spends most of the computational time in the 
execution of the LAPACK subroutines. In this subsection we summarize all LAPACK 
subroutines which are used in STARWALL: 

 dpotrf – computes the lower-upper (LU) factorization of a tridiagonal matrix; 
 dpotrs – solves a system of linear equations with a Cholesky factored 

symmetric positive defined matrix; 
 dgemm – computes a matrix-matrix product for general matrices;  
 dsygv – computes all eigenvalues and corresponding eigenvectors of a real 

generalized symmetric definite eigenproblem; 
 dgetrf – computes the LU factorization of a general matrix; 
 dgetri – computes the inverse of the LU factored general matrix. 

2.1.5. Bug check 

Before starting the optimization and parallelization the code was checked for 
correctness. The run time debugging was performed with two different compilers: 
Lahey and Intel. Afterwards the source code was also analyzed by the Forcheck 
static analyzer. 

Three uninitialized variables were found that could produce unexpected behavior of 
the code: 

1) In file solver.f90:  nd_w=ncoil+npot_w 
2) In file matrix_ec.f90: alv=pi2*fnv 
3) In file resistive_wall_respones.f90: ntri_c 

These problems were reported to the project coordinator and resolved afterwards.  

The code was running mainly on a LINUX cluster called TOK-P, which is located at 
RZG, Garching. During parallel simulations a bug was detected in the standard input 
(stdin) system of this cluster. Within the default configuration only the process with 
rank=0 reads data from the stdin. Adding the flag ‘-s all’ to mpirun should allow all 
processes being involved in the computation to read data from standard input. 
However, this flag was working only on a single node with all MPI tasks pinned. For 
tests with two or more nodes the code got stuck at the stdin reading. The same tests 
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were performed on HELIOS using the same compiler and compile flags. In this case 
the std reading worked properly. This bug was reported to the support team of the 
TOK-P cluster at RZG. The problem was avoided by reading the input only on task 0 
and communicating it to the other tasks.   

2.2. MPI parallelization 

2.2.1. Parallelization of the eigenvalue solver 

The LAPACK subroutine used for the calculation of the eigenvalues and the 
corresponding eigenvectors got the priority for parallelization. This subroutine 
consumes more than 70% of the total STARWALL execution time and uses two large 
matrices as input parameters. The subroutine is called dsygv and a more detailed 
description can be found in Ref. [8]. This subroutine was replaced by its parallel 
version PDSYGVX from the ScaLAPACK library that includes subroutines for linear 
algebra computation on distributed memory computers supporting MPI [8]. 

The PDSYGVX subroutine includes 34 input/output parameters by means of which 
the user can specify: the eigenvalue problem type to be solved, which eigenvalues 
and eigenvectors must be computed, the calculation precision, etc. Prior the 
calculation all global matrices must be distributed on process grid using a so called 
block-cycling scheme [8]. 

In order to test the correctness of the implementation of the PDSYGVX subroutine 
the calculated eigenvalues and the eigenvectors were compared with the results from 
the original (sequential) subroutine dsygv. Fig. 7 shows the calculated eigenvalues 
from both the dsygv (red points) and the PDSYGVX (green points) subroutines. In 
the case of the ScaLAPACK subroutines 16 MPI processes distributed over 16 
computational nodes (1 per node) were used. A very good agreement was found for 
different problem sizes.   

 
Fig. 7 Eigenvalues from the sequential LAPACK dsygv (red points) and the parallel 
ScaLAPACK PDSYGVX (green points) subroutine. 

In spite of the perfect agreement of the eigenvalues the calculated eigenvectors are 
somehow unpredictable. For some problem sizes they are identical between the 
dsygv and PDSYGVX subroutine. In other cases some eigenvectors have the same 
length but point in opposite direction i.e. all their components are with opposite sign 
(Fig. 8 on the left). They are still correct eigenvectors as can be seen in Fig. 8 on the 
right, where the absolute values of all eigenvector components are shown. However, 
sometimes eigenvectors have even different values of their components. Such 
behavior can be explained by a not unique solution of the eigenvector problem. If 
some eigenvalues are not distinct, i.e. the solution of the characteristic equation has 
multiple roots, we say that these eigenvalues are degenerated. Different bases of 
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eigenvectors exist for these degenerate eigenvalues. Therefore, LAPACK and 
ScaLAPACK can deliver different components for eigenvectors which correspond to 
degenerate eigenvalues, but they still represent the right eigenvector.   

In addition, the correctness of the new subroutine was checked by a comparison of 
the physical solution for the eigenvectors from LAPACK and ScaLAPACK library. The 
STARWALL results were in very good agreement within an absolute error of 10-13. 

 
Fig. 8 Eigenvector components on the left, and their absolute values on the right, from the 
sequential LAPACK routine dsygv (red points) and the parallel ScaLAPACK routine 
PDSYGVX (green points).  

The advantage of the ScaLAPACK library in comparison to LAPACK is that it benefits 
from the IEEE ±∞ arithmetic to accelerate the computations of the eigenvalue solver. 
Such improvement can be seen in Fig. 9 where the execution time of the 
ScaLAPACK subroutine PDSYGVX obtained from the simulations using one task is 
compared to the execution time of the LAPACK dsygv subroutine for different 
problem sizes. The ScaLAPACK solver works faster than LAPACK for all problem 
sizes and gains a factor more than two for large matrices.   

 
Fig. 9 Comparison of the eigenvalue solver execution time between ScaLAPACK using one 
process and the LAPACK library for different problem sizes.  

The parallelization efficiency of the PDSYGVX subroutine is shown in Fig. 10 on the 
left for a small problem size (ntri_w=10050) and on the right for large matrices 
(ntri_w=51200). For an efficient ScaLAPACK performance the matrix size should be 
large enough relative to the amount of processes being involved in the simulation [8]. 
Therefore, the parallelization efficiency is almost saturated with 16 processes for a 
small problem size with an execution time of only a few seconds. However, when 
large matrices are used the problem scales almost linearly. An even better 
performance is expected for a production run in which ntri_w=500000.    
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Fig. 10 PDSYGVX parallelization efficiency. On the left, small problem size with 
nwu=nwv=70; on the right, large problem size nwu=nwv=160. 

2.2.2. Parallelization of the matrix_ww subroutine  

The eigenvalue solver described above uses two large matrices 
(a_ww(npot_w,npot_w) and b_rw(npot_w,npot_w)) as input parameters. The size of 
these matrices for a large production run will be (250,000 × 250,000) that is 500 GB 
for double precision components. Therefore, these matrices have to be distributed 
over MPI tasks. We started the parallelization with the subroutine matrix_ww where 
the matrix a_ww is built.  

In this subroutine the matrix a_ww is calculated from another matrix, which is named 
dima(ntri_w,ntri_w). The size of this additional matrix is even larger than the size of 
the matrix a_ww, namely (500,000 × 500,000), that is 2 TB for the double precision 
components. Thus, dima matrix must be also distributed over the MPI processes.  

The original kernel loop that corresponds to the creation of the matrix a_ww is shown 
in Fig. 11. One can see that the indexes of the matrix a_ww and dima are not linked. 
The first one gets its indexes from the additional array ipot_w where values range 
from 1 to npot_w, while the dima indexes can run from 1 to ntri_w. 

We tried to find some patterns between the a_ww and dima matrices such to 
determine which components of the dima matrix will be used for calculating the 
equally distributed a_ww matrix. The a_ww matrix was distributed among 16 
processors (Fig. 12 left). Each pink rectangle represents the global a_ww matrix, and 
the yellow rectangles depict the sub-matrices assigned to each of the 16 new tasks. 
The dima matrix indexes that were used to calculate the local distributed matrix 
a_ww are shown in Fig. 12 on the right. Now, the pink rectangles stand for the global 
dima matrix, whereas the yellow represent those indexes which are needed to 
calculate the local part of sub-matrices a_ww (yellow rectangles on the left figure). 
One can see that the dima components, which are used to build the distributed part 
of a_ww are not localized and spread across the whole matrix. Hence, it would have 
been very difficult to efficiently distribute the matrix dima.   
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Fig. 11 Original kernel loop that builds the matrix a_ww.  
 

 

Fig. 12 Distributed matrix a_ww on 16 processors (left) and the corresponding indexes of the 
matrix dima that are used to calculate the local part of a_ww (right).   

2.2.2.1. Matrix free “dima” computation   

As the distribution of the matrix dima could not be performed efficiently, we decided 
to rewrite the code in such a way that components of the dima matrix will be 
calculated directly in the place where they should be used.  

In the original code version the matrix dima was pre-calculated by means of the 
subroutine tri_induct, where three nested loops take place. If this subroutine would 
be straightforwardly implemented in the kernel loop (Fig. 11), where it has already 
four nested loops, computational time would be years even on computer clusters. 
Therefore, we split this subroutine in three parts: tri_induct_1, tri_induct_2, 
tri_induct_3. Two subroutines (tri_induct_1, tri_induct_2) are called outside the kernel 
loop and have no significant effect on the total computational time. Inside the kernel 
loop only one more nested loop with an index running over seven points was added. 
A code fragment of the new version of the kernel loop is shown in Fig. 13. One can 
see that the dima matrix is absent there. Instead, there is the function call 
tri_induct_3, where the necessary value of dima is calculated and stored in the 
variables dima_sca and dima_sca2. 

The drawback of such a modification is the increase of the computational time. Fig. 
14 shows the elapsed time of the kernel loop for different problem sizes using the old 
version of the code with the matrix dima and the new version with the dima free 
format. The computational time increases in about two times for all problem sizes. 
For a large production run with ntri_w=500,000 it was estimated to be around 111 
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hours on one CPU. The advantage is naturally the possibility to distribute the array 
and run in parallel.   

The next step was to check the parallelization efficiency of the kernel loop. This test 
is shown in Fig. 15. One can see that a speed-up factor of ~110 can be reached 
when 256 tasks are involved for the problem size ntri_w=12800. Therefore, the 
computational time of the kernel loop without the dima matrix using 256 cores would 
be about one hour.  

 

Fig. 13 Matrix dima free kernel loop that builds the matrix a_ww.  
 

 
Fig. 14 Computational time of the kernel loop of the subroutine matrix_ww versus the problem 
size using the old code version (with dima matrix) – blue line and modified kernel loop (with 
dima free format) – orange line.  
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Fig. 15 Speed-up of the kernel loop versus number of MPI tasks. The problem size is 

ntri_w=12800  

2.2.2.2. Matrix free “dima” computation with ScaLAPACK indexing   

In order to use the distributed matrices as input parameters for ScaLAPACK 
subroutines they must be transformed to a special format using the so-called Block-
Cyclic distribution scheme, which should speed-up the calculation [8]. For example, if 
we consider the global matrix with a size of 9×9, which is mapped onto a 2×3 
process grid (six tasks) and with a blocking factor of two, the decomposition which is 
shown in Fig. 16 has to be done. On can see that in this format different processes 
have different local matrix sizes, from 5×4 for process (0,0) to 4×2 for process (1,2). 
Moreover, the mapped indexes in the local distributed matrix are not sequential. For 
instance, in the process (0,0) the first row includes the following elements of the 
global matrix: a11, a12, a17, a18.      
 

 0 1 2 

0 

a11 a12 a17 a18 a13 a14 a19 a15 a16

a21 a22 a27 a28 a23 a24 a29 a25 a26

a51 a52 a57 a58 a53 a54 a59 a55 a56

a61 a62 a67 a68 a63 a64 a69 a65 a66

a91 a92 a97 a98 a93 a94 a99 a95 a96

1 

a31 a32 a37 a38 a33 a34 a39 a35 a36

a41 a42 a47 a48 a43 a44 a49 a45 a46

a71 a72 a77 a78 a73 a74 a79 a75 a76

a81 a82 a87 a88 a83 a84 a89 a85 a86

Fig. 16 Example of the Block-Cycling matrix distribution of size 9×9 into 2×2 blocks mapped 
onto a 2×3 process grid.  

Hence, the Block-Cyclic distribution scheme described above has to be implemented 
in the subroutine matrix_ww in order to bring the local distributed matrix a_ww to a 
format compatible with the ScaLAPACK subroutines. Such index mapping was 
developed and implemented in two subroutines: ScaLAPACK_mapping_i, 
ScaLAPACK_mapping_j and then inserted in the kernel loop. Such index distribution 
causes bad scalability of the kernel loop when using the same structure shown in Fig. 
13. Therefore, this kernel loop was rewritten one more time to ensure good scalability 
with the ScaLAPACK mapping scheme (Fig. 17). Using 512 cores with the new 
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version a speed-up factor of 218 could be reached. The wall clock time was 
estimated for a large production run  with ntri_w=500,000 to be about 4 hours.  
 

 
Fig. 17 ScaLAPACK index mapping dima free kernel loop that builds the matrix a_ww.  

2.2.3. Parallelization of the matrix_pp subroutine  

The next subroutine chosen for parallelization was matrix_pp. It produces the 
intermediate matrix (a_pp) that will be used to calculate the input matrix for the 
eigenvalue solver. This subroutine is similar to the matrix_ww described above. The 
main difference lies in the construction of the dima matrix. It uses two additional 
matrices dist1 and dist2 in order to calculate its components. The size of the dima 
and the resulting matrix a_pp is also different from the previous subroutine, because 
it corresponds to the number of triangles within the plasma that should be discretized 
by ntri_p=200000 for a large production run. On one side, we got more complexity in 
the kernel loop, on the other side, the loop is smaller in comparison to the kernel 
matrix_ww.  

The additional subroutine (get_index_dima) was developed in order to determine 
which indexes of the matrix dima are used for computing the matrix a_pp 
components. The kernel loop of this subroutine is shown in Fig. 18.  

The scalability of this kernel loop, depicted in Fig. 18, is shown in Fig. 19. A speed-up 
factor of 220 can be achieved when 512 cores are involved in the computation for the 
problem size ntri_p=46080. For a large production run the wall clock time (with 512 
cores and ntri_p=200,000) reduces to about 2 hours.  
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Fig. 18 ScaLAPACK index mapping dima free kernel loop that builds the matrix a_pp in 
subroutine matrix_pp. 

 
Fig. 19 Speed-up of the kernel loop in the matrix_pp subroutine versus number of MPI tasks. 
The problem size is ntri_p=46080. 

2.2.4. Parallelization of the matrix_wp subroutine 

The matrix_wp subroutine is similar to the previously parallelized subroutines 
matrix_ww and matrix_pp described above. The main difference lies in the presence 
of two large matrices, dima and dimb, that have to be eliminated from the code in 
order to save a significant amount of memory. Therefore, the components of these 
two matrices have to be calculated directly in place rather than stored in memory. 
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Additionally, the a_wp matrix size (npot_w, npot_p) and the indexes of the kernel 
loop (ntri_w, ntri_p) are also different from the previous subroutines.  

The subroutine was successfully parallelized providing identical results as the original 
version within an absolute difference of 10-10. The scalability of the subroutine is 
shown in Fig. 20. A speed-up factor of 148 can be achieved when 256 cores are 
involved in the computation. The subroutine was tested for a large production run 
with ntri_p=2*105 and ntri_w=5*105. The execution time with 128 tasks was about 3.5 
hours.  

 
Fig. 20 Speed-up of the matrix_wp subroutine versus number of MPI tasks. 

2.2.5. Parallelization of the matrix_rw subroutine  

The parallelization of the matrix_rw subroutine was relatively straightforward in 
comparison to the previous matrix_wp subroutine since it does not involve the large 
matrices dima and dimb. The only problem was to bring the local matrix a_rw to the 
ScaLAPACK matrix structure described earlier. The subroutine was successfully 
parallelized providing accurate results within difference of ~10-10. The subroutine was 
tested for a large production run with ntri_p=2*105 and ntri_w=5*105. The execution 
time using 256 tasks was in the range of a few minutes.  

2.2.6. Parallelization of the matrix_pe subroutine 

The matrix_pe subroutine has a different kernel loop structure compared to all 
previously parallelized subroutines. It is independent of the dima and dimb matrices 
and the indexes of the kernel loop run from 1 to the number of harmonics (n_harm) 
and to the number of boundary elements (N_bnd). The subroutine was parallelized 
with high accuracy (absolute difference of ~10-10) and the output matrix (a_pwe) was 
re-ordered to be compatible with the ScaLAPACK matrix structure. Because of much 
smaller values of n_harm and N_bnd than ntri_p and ntri_w the execution time for 
this subroutine is small (few minutes) for a production run.  

2.2.7. Parallelization of the matrix_ep and matrix_ew 
subroutines 

The subroutines matrix_ep and matrix_ew have a similar structure with differences 
only in the size of the main arrays (a_ep and a_ew). a_ep has the size of the 
potential points for the plasma (npot_p) and a_ew of the potential points for the wall 
(npot_w). All other loops and components are identical.  

In the main body of these subroutines three additional supplying subroutines are 
called. They are bfield_par, bfield_c and real_space2bezier. Moreover, inside the 
subroutine real_space2bezier two LAPACK functions are executed (dpotrf and 
dpotrs). The former computes the lower-upper (LU) factorization of a tridiagonal 
matrix, while the latter solves a system of linear equations with a Cholesky factored 
symmetric positive definite matrix. Fortunately, these functions use as input 
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parameters the matrices aa and t with dimensions (n_dof_bnd, n_dof_bnd). As the 
variable n_dof_bnd is about 400 for a production run, the double precision arrays (aa 
and t) will not represent more than 1.5 MB. Therefore, we left these LAPACK 
functions untouched i.e. in the sequential version.  

After the parallelization of the subroutines matrix_ep and matrix_ew, including the 
inner supplying subroutines, the total computational time was measured for a 
production run with ntri_w=500000. Using 256 tasks the wall clock time for the 
matrix_ep was 51 s, while 15 s was necessary for computing the matrix_ew 
subroutine.   

2.2.8. Parallel matrix transpose 

One part of the STARWALL solver recalculates the entries of the matrix a_pwe by 
using values from the transposed matrix a_wp. In order to improve the code 
performance this subroutine was replaced by the ScaLAPACK library function 
PDTRAN that can be adapted for a matrix transpose. The wallclock time does not 
exceed a few seconds for the production run.  

2.2.9. Parallel LU factorization with linear system solver 
Two LAPACK functions named dpotrf and dpotrs are executed after the a_pwe 
matrix transpose. The first function computes the lower-upper (LU) factorization of a 
tridiagonal matrix a_pp, while the second solves a system of linear equations with a 
Cholesky factored symmetric positive definite matrix. Both functions were replaced 
with their parallel counterpart from the ScaLAPACK library and grouped in the 
subroutine cholesky_solver. The subroutine provides the correct result within an 
absolute error of 10-10 in comparison with the sequential LAPACK version.  

2.2.10. Parallelization of building matrix a_ee 
The sequential version of the code for building the matrix a_ee is shown in Fig. 21. 
As one can see this matrix is formed by the multiplication of the matrices a_ep and 
a_pwe using only a small part of the elements of the matrix a_pwe. This loop was 
replaced by the ScaLAPACK subroutine named PDGEMM that computes the matrix-
matrix product. However, before the execution of this subroutine the distributed 
matrix a_pwe was rewritten to be used in the ScaLAPACK PDGEMM subroutine. 
Finally, the parallel version of the building matrix a_ee was tested and it provided 
correct results compared to the sequential version.   

 

Fig. 21 Sequential version of building the matrix a_ee. 

2.2.11. Parallelization of building matrices a_ew and a_we 
Fig. 22 shows the sequential version of the building of the matrices a_ew and a_we. 
The structure of these loops is similar to the one described in the previous section 
with different sizes and indices. However, both loops can be replaced by the 
ScaLAPACK subroutine for the matrix-matrix product (PDGEMM) as it was done for 
building the matrix a_ee. Two new subroutines named a_ew_computing and 
a_we_computing were created, which include the parallel building of the distributed 
matrices a_ew and a_we, respectively.    
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Fig. 22 Sequential version of building the matrices a_ew and a_we. 

2.2.12. Parallelization of the LAPACK dgemm subroutine 
The last call of the STARWALL solver subroutine is the LAPACK dgemm subroutine 
for the multiplication of the matrices a_wp and a_pwe. This subroutine was replaced 
by its parallel counterpart from the ScaLAPACK library namely PDGEMM. The same 
subroutine was used to build the matrices a_we, a_ew and a_ee. Therefore, its 
implementation was relatively easy and required only a few additional ScaLAPACK 
descriptors. The whole computation was encapsulated in the subroutine named 
matrix_multiplication.    

2.2.13. Parallelization of resistive_wall_response subroutine 

The resistive_wall_response subroutine follows after the solver subroutine described 
above. There are three main parts of this subroutine: (i) eigenvalue solver, (ii) 
preparation of output matrices and (iii) printing of final results. The eigenvalue solver 
has been parallelized in the very beginning of this project described in section 2.2.1.   

After solving for the eigenvalues the output matrices a_ye, a_ey and d_ee are 
computed. The sequential version of the calculation of these matrices is presented in 
Fig. 23. As we can see the matrices a_ey and d_ee are computed by the matrix-
matrix multiplication scheme, while in order to calculate the matrix a_ye the 
transpose of the matrix s_ww is required. All loops were successfully parallelized and 
copied in three subroutines named a_ey_computing, a_ye_computing and 
d_ee_computing.  

The last part of the resistive_wall_response subroutine is printing the computed 
matrices to the different output files. All matrices that were calculated in the parallel 
version of the STARWALL code are distributed over the number of MPI tasks using 
the ScaLAPACK block-cycling distribution scheme. Thus, the output subroutine 
should match with the reading subroutine in the JOREK code that is not implemented 
yet. Therefore, we did not modify the printing part of the code and postpone it until 
the reading part in JOREK will be implemented in order to know the necessary output 
format.  
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Fig. 23 Sequential version of computing the final matrices a_ye, a_ey and d_ee. 

2.2.14. Parallelization of matrix s_ww inversion 
The last computing subroutine of the STARWALL code, before printing out the final 
results, performs the inversion of the eigenvectors matrix (s_ww). Two LAPACK 
subroutines are used for this purpose. They were replaced by their parallel 
counterpart from the ScaLAPACK library. First, the subroutine named PDGETRF 
calculates the LU factorization of a general matrix using partial pivoting. Second,  
PDGETRI computes the inverse of a matrix using LU factorization from the previous 
step. Both subroutines were grouped in the subroutine named 
computing_s_ww_inverse. The computational time of this subroutine was measured 
to be of ~2805 s for a production run (ntri_p=2*105 and ntri_w=5*105).  

2.2.15. Parallelization of input subroutines 
Three input subroutines were also parallelized: control_boundary that reads the 
JOREK control boundary data; tri_contr_surf that is used to generate the control 
surface triangles and surface_wall that performs the discretization of the wall. These 
subroutines were parallelized in such a way that only one master task reads the data 
from the input files and broadcasts it to the tasks involved in the computation. An 
additional subroutine named control_array_distribution was inserted after the reading 
part. This subroutine controls and checks the distribution of the matrices among the 
MPI tasks.  
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2.3. Parallel performance test 
After the whole code was parallelized and tested for the correctness of the output 
results we did a comparison of the code performance with respect to the original 
version. The maximum possible problem size for the original code version which fits 
into memory is the following: ntri_p=48000, ntri_w=65000, nharm=11 (57 GB memory 
consumption). The wallclock time for such a simulation using 16 OpenMP processes 
is ~4 hours. We performed a simulation with identical parameters but with the new 
(MPI parallel) code version. In spite of the larger complexity of the solver due to the 
new version of the matrix building subroutines, which avoids the storing of the largest 
matrices in the code named dima and dimb, the total computational time (excluding 
the output) on one computing node and 16 MPI tasks is about the same as it is in the 
OpenMP version of ~4.2 hours consuming 41 GB of the memory. However, the 
computational time is reduced to about 40 minutes when using eight compute nodes 
and 128 MPI tasks. Nevertheless, for the small problem sizes which fit in the memory 
of one node, the OpenMP version is faster than the parallel one with 16 MPI tasks.   
 
Next step was to test the code performance for a typical production run with the 
following parameters: ntri_p=202.240, ntri_w=500.000, nharm=11. Fig. 24 shows the 
execution time of some subroutines from the parallel version of the STARWALL 
code. For this test 2048 MPI tasks were used distributed among 128 compute nodes 
on HELIOS. The execution time from all subroutines shown in Fig. 24 represents 
99% of the total computational time that is about 11 hours. One can see that four 
subroutines (matrix_pp, matrix_wp, matrix_ww and the eigenvalue solver – 
simil_trafo), described in details above, consume most of the computational time.  
 

 
Fig. 24 The wall clock time of some subroutines from the parallel version of the STARWALL 
code for a production run with the following parameters: ntri_p=202.240, ntri_w=500.000, 
nharm=11. The subroutines are listed in their execution order.  

We gradually increased the problem size and determined the maximum possible run 
within 128 nodes with the following parameters: ntri_p=202.240, ntri_w=551.250, 
nharm=11 and a wallclock time about 13 hours.  
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2.3.1. Parametric scan of the ScaLAPACK blocking factor 
It was mentioned above that the ScaLAPACK library requires a special matrix 
distribution format (Block-Cyclic). The blocking size of such a format is defined by the 
user, and it has a strong impact on the code performance. Fig. 25 shows the wall 
clock time for a production run (ntri_p=202.240, ntri_w=500.000) of five subroutines, 
that consume more than 95% of the total computational time, versus different sizes of 
the ScaLAPACK blocking factor (from NB=2 to NB=256). Among these subroutines 
are two from the ScaLAPACK library (matrix multiplication – DGEMM and the 
eigenvalue solver – PDSYGVX) and three for the building matrices (matrix_pp, 
matrix_wp, matrix_ww). One can see that the execution time of the ScaLAPACK 
subroutines decreases using a higher blocking factor. For small blocking factors 
(NB=2 or NB=4) the execution time of the eigenvalue solver is too large (>15 hours) 
for the program to finish within 24 hours. Therefore, these points are not depicted in 
Fig. 25. A significant reduction of the computational time is visible up to NB=64. After 
that the execution time decreases but only by a few percent when it reaches 
NB=128. With NB=256 the execution time of these subroutines begins to increase. 
The computational time of the matrix building subroutines fluctuates for all blocking 
factors. The total computational time (orange line) shows that the best performance 
for such a problem size is ~11 hours with NB=64. This is in agreement with the 
ScaLAPACK documentation where developers propose for the best performance to 
use the following blocking factors NB=32, 64 or 128 [9]. However, for a different 
problem size the best performance could be with a different blocking factor. 
Therefore, the STARWALL input file was extended including now the blocking factor 
as an input parameter.  

 
Fig. 25 The wall clock time versus the ScaLAPACK blocking factor for a production run with 
the following parameters: ntri_p=202.240, ntri_w=500.000, nharm=11. 

2.3.2. Scalability test 

We tested also how the total computational time scales according to the number of 
MPI tasks involved in the calculation. We decreased the problem size to be able to 
run it on a smaller number of compute nodes. Fig. 25 shows the wall clock time for a 
production run (ntri_p=202.240, ntri_w=460.800) of the four subroutines, that 
consume most of the total computational time, versus the number of MPI tasks. For 
such a problem size the whole code can be executed on 64 nodes (1024 MPI tasks). 
With a smaller number of nodes only a part of the code is performing due to the 
memory limit. One can see that the wall clock time decreases for all subroutines up 
to 128 nodes (2048 MPI tasks). Up to 4096 tasks the execution time of the 
ScaLAPACK eigenvalue solver continues to shrink. However, the computational time 
of the three matrix building subroutines starts to grow above 2048 tasks. We 
detected that the optimal code performance could be reached by using 128 compute 
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nodes with a ScaLAPACK blocking factor of 64 for the production run described 
above. For a larger or smaller problem size the scaling could be different.  

 

 
Fig. 26 Scaling of the most time consuming subroutines in the STARWALL code.  

The scalability of the whole program execution including the output was tested also 
for a moderate problem size with ntri_p=48000, ntri_w=39200, nharm=11 (Fig. 27). A 
speed-up factor of nine was achieved with 256 MPI tasks in comparison to 16 MPI 
tasks. On a node, the original version is faster than the parallel one due to the much 
more complex algorithm used for the matrix building subroutines that avoids to store 
the largest matrix in the code named dima and dimb. However, with two nodes the 
total wall clock time becomes smaller than in the original version and the speed-up 
factor of six can be achieved with 256 MPI tasks in comparison to the original 
version.   

 

Fig. 27 Scaling of the total wallclock time in the STARWALL code for a small problem size 
with ntri_p=48000, ntri_w=39200, nharm=11. The numbers next to the points are the task 
number and computation time.  
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2.3.3. Temporary output 
In the future a consistent format of the output of the STARWALL code and the input 
of the JOREK code has to be chosen. After that both subroutines must be 
parallelized. At the moment we use the same output format in the parallel version as 
in the sequential one. This gives a limitation for the problem size resulting from the 
output matrix size of no more than 3.5 GB due to the memory capacity of the node of 
64 GB and assuming that we run 16 MPI tasks per node where each task should 
allocate such output matrix.   

2.4. Parallelization of the code version for magnetic coils 
The standard code version does not include a calculation over the external magnetic 
coils. However, in the future, this feature of the code must be usable for production 
runs with a high number of finite element triangles. Therefore, it was decided to 
parallelize the subroutines that deal with the magnetic coils. Among them are one 
reading (read_coil_data) and five matrix building subroutines (matrix_cc, matrix_cp, 
matrix_wc, matrix_rc, matrix_ec). All these subroutines have been successfully 
parallelized providing identical results in comparison with the original code version. 
Due to the project time limit the performance of these subroutines was not measured. 
However, it is expected that including these additional subroutines will not increase 
the wallclock time for a production run by more than 10–20 %. This is due to the 
relative small matrix sizes being involved in the external coils calculation in 
comparison to the matrices that were parallelized before.        
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3. MPI parallelization of the magnetohydrodynamics 
code JOREK  

The JORSTAR2 project is a continuation of the JORSTAR project described above 
and dedicated to the implementation of parallel I/O in the STARWALL output and 
JOREK input subroutines. The large STARWALL matrices are distributed over MPI 
tasks to reduce memory consumption and to allow for running larger simulations in 
terms of the JOREK computational grid and the number of triangles used in 
STARWALL to discretize wall structures. A sequential part of JOREK in which the 
input matrices from the STARWALL code are used has to be parallelized as well.   

3.1. Goal of the project 
Thanks to the JORSTAR project it is now possible to resolve the realistic wall 
structure with a large number of finite element triangles in the STARWALL code. 
However, the output subroutine is still sequential. This project concentrates on the 
MPI parallelization of the sequential I/O part in both the JOREK and STARWALL 
codes and adapting the JOREK code for using the STARWALL response matrices 
now distributed over MPI tasks. 

3.2. Parallelization of the STARWALL output subroutine  
Before starting the implementation of the parallel I/O modules in both STARWALL 
and JOREK a variety of libraries and subroutines were analyzed in order to find the 
best candidate.  

Most linear algebra subroutines were parallelized in the previous JORSTAR project 
by means of the parallel ScaLAPACK library [10]. This library requires the so-called 
block-cycling matrix distribution format described in detail in Sec. 2.2.2. Before they 
can be used in an output procedure, all these matrices have to be converted to a 
standard contiguous format. We first investigated if the ScaLAPACK library has a 
suitable subroutine for parallel I/O with a direct conversion to this standard format. 
Only one subroutine named PDLAPRNT was found. This subroutine collects all 
distributed local matrices, converts them from the block-cycling distribution format to 
the contiguous one and writes a global matrix. It could have been a straightforward 
solution for our problem as everything in the STARWALL code is already prepared 
for the ScaLAPACK library. However, after applying and testing this subroutine we 
realized that it only works for small problem sizes. The subroutine is written in such a 
way that only one MPI task locally collects all distributed matrices and afterwards 
writes them to a file. This makes the output very slow and restricts the maximum 
global matrix size to the memory capacity of one computing node or less (<180 GB 
on the Skylake partition of the Marconi supercomputer). Therefore, this subroutine 
does not meet our requirements as some global matrices of a STARWALL 
production run can have sizes of about 500 GB.    

The next step was to test the ROMIO library which is an implementation of the MPI 
3.0 standard. This library includes many different MPI I/O subroutines which were 
tested for our project. We started with MPI_File_seek, MPI_File_write and 
MPI_File_write_at. The first subroutine seeks to the writing position, while the second 
subroutine performs the writing itself. The last subroutine is a combination of the first 
two. These subroutines were working fine and provided the correct output. However, 
they are not collective routines which makes the output very slow for large problem 
sizes (a couple of days for a matrix larger than 500 GB). Moreover, they require an 
additional calculation for transforming the block-cycling distribution to the contiguous 
format. Therefore, these subroutines are not suitable for our project.  

Next, we tested the collective subroutine MPI_File_write_at_all, which has the same 
functionality as the previously described subroutines with the difference that all MPI 
tasks write simultaneously to a file. Again this subroutine works fine and much faster 
than the previous ones but it also has one restriction. Each MPI task has to call it the 
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same number of times as it is a collective subroutine but sometimes the sizes of the 
local distributed matrices are not identical for each MPI task. Therefore, in such 
cases the subroutine gets stuck and the program deadlocks.  

Finally, a solution was found by using the subroutines MPI_Type_create_darray and 
MPI_File_set_view. The former creates a description of any complex data structure, 
for example block-cycling distributed submatrices, while the latter defines an 
independent file view for each MPI task. Therefore, each MPI task can write its own 
specific data structure concurrently to the same file by means of a single call to the 
MPI_File_write_at_all subroutine described before. This method works very fast for 
any problem size and delivers correct results. Similar routines can be used in JOREK 
to provide a different distribution of matrices over MPI tasks already when reading 
them. This is described in the following section. 

However, we decided to continue to investigate further possible candidates for our 
problem and tested the parallel HDF5 library as it was already successfully used in 
some parts of the JOREK code. We were able to achieve correct and fast 
performance for equally distributed matrices (each submatrix has the same size). 
However, we did not find a possibility by means of the HDF5 library to in parallel write 
not equally block-cycling distributed matrices. Therefore, we kept the solution 
described in the previous paragraph.  

3.2.1. STARWALL parallel I/O performance test 
After implementing the solution for each output matrix in STARWALL, performance 
measurements were conducted. Different problem sizes as well as different numbers 
of computing nodes involved in the writing process were tested. All tests were done 
on the Broadwell partition of the Marconi supercomputer, which offers 36 cores per 
node. The wall clock time for the complete output was about 83 seconds for a 
moderate problem size with ntri_w=120,000 finite element triangles in the wall using 
two computing nodes. The output file size for this case was about 110 GB. Only ~100 
seconds were needed for a production run output with ntri_w=500,000 and 
ntri_p=202,000 using 64 computing nodes creating a file with a size of about 1 TB. A 
complete STARWALL production run, including all computations and output 
procedures, with ntri_w=500,000 and ntri_p=200,000 using 64 computing nodes 
takes about nine hours. This is much less time than is required by the project 
coordinator (<24 hours). At this step all work concerning the STARWALL code is 
finished. 

3.3. Parallelization of the JOREK input subroutine 
The same solution that was used for the STARWALL output was applied to the 
JOREK input subroutine including only small modifications which are described here. 
The global matrices should not be read from the input file (i.e. the STARWALL output 
file) in the block-cycling distribution format but in an ordinary way using a row– or a 
column–wise distribution. Therefore, instead of the MPI_Type_create_darray 
subroutine, the MPI_Type_create_subarray subroutine was used. The data structure 
of the matrices was also modified. Instead of using a simple allocatable array, we 
introduced a data type that includes local allocatable submatrices, the starting and 
ending indices of the global matrix and the type of distribution (column–or row–wise). 

Results obtained from the new parallel reading subroutine were compared with the 
old sequential version. They were identical up to a relative error of ~10-13. Afterwards 
the execution time of the whole reading procedure for the production run 
(ntri_w=500,000, ntri_p=200,000) was measured. Using 16 computing nodes and 36 
MPI tasks per node the wall clock time was less than one minute. 

3.4. Restrictions of the Intel MPI 3.0 library 
One important limitation in the subroutines MPI_File_write_at_all and 
MPI_File_read_at_all was found during the development of the parallel MPI I/O. The 
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amount of elements to be read/written from/to a file by each MPI task is an input 
parameter for both subroutines. According to the Intel MPI documentation [11] this 
variable is a four byte integer that can have a maximum value of 2147483647. This 
corresponds to approximately two GB of data. For double precision (eight bytes per 
value) arrays, which are used in our codes, the maximum size of data that can be 
read/written by each MPI task is limited to 2147483647*8 bytes ≈ 16 GB. This means 
that if an array size is larger than number_of_MPI_tasks*16 GB the code will fail. For 
a production run, the largest output matrix uses about 500 GB.  Therefore, we need a 
minimum of 32 MPI tasks in order to overcome this limitation and to perform the 
correct reading/writing procedure. The next MPI standard, 4.0, should correct this 
limitation by changing the data type of the count variable. However, it was decided to 
introduce modifications in the reading subroutine in order to avoid this limitation. If 
the local matrix size is larger than 16 GB, the reading procedure will be performed in 
several steps, reading a data chunk that is less than 16 GB on each step.  

As described above, and according to the MPI 3.0 standard, it should be possible to 
read 16 GB of data per MPI task in one operation for a double precision array. 
However, in the Intel MPI implementation of these subroutines, the variable count is 
multiplied by the type of the read array (eight for double precision) and the result of 
this operation is stored in a four byte integer variable. Therefore, if we try to read the 
maximum possible amount of elements (2147483647) for a double precision data 
type the code crashes with a segmentation fault. As long as this bug is present in the 
Intel MPI library we need to restrict our reading chunk size to less than two GB. This 
bug was reported to the Intel support team [12] and should be fixed in the next 
version of the library. 

Additional modifications were made which ensure that each MPI task can read a 
large submatrix (> 2 GB) without any errors, circumventing the bug in the Intel MPI 
library.  

3.5. Parallelization of the JOREK subroutines 
After the JOREK parallel input was successfully developed and tested the rest of the 
code that uses the distributed matrices from STARWALL had to be parallelized as 
well. This mainly concerns the parallelization of the linear algebra operations.  

3.5.1. Data structure of distributed matrices 

A new data structure (Fig. 28) was introduced in JOREK in order to encapsulate 
properties of a distributed matrix. loc_mat represents the local chunk (two 
dimensional array) of a distributed matrix. distrib tells us if a matrix is distributed or 
not. row_wise shows the type of the distribution: if row_wise=.true. the matrix is 
distributed row–wise; if row_wise=.false. the matrix is distributed column–wise. 
ind_start and ind_end denote the starting and ending indices of the current chunk in 
the global matrix. step is the chunk size of the local matrix. dim defines the global 
matrix dimensions.     

 
Fig. 28 Data structure for a distributed matrix. 
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3.5.2. Parallelization of the update_response subroutine 

This subroutine constitutes most of the linear algebra calculations in the code that 
had to be parallelized. The most time consuming operation, which appears in many 
places in the code, is a generalized matrix-matrix multiplication. This operation needs 
to be done for different combinations of distributed matrices. For clarification we take 
the following example from the code:  

response_m_e(:,:) = sr%a_ee(:,:) + matmul( sr%a_ey(:,:), response_m_a(:,:) ). 

Four matrices are used in this example: response_m_e, a_ee, a_ey and 
response_m_a. A matrix-matrix multiplication is performed between the a_ey and 
response_m_a matrices by using the standard sequential matmul subroutine. The 
resulting matrix is added to the matrix a_ee and finally saved as the response_m_e 
matrix. The difficulty is that the matrices can be distributed using different patterns 
(row–wise or column–wise). In addition, some small matrices in the code stay 
unmodified (they are not distributed). In our example, the matrices a_ee and a_ey 
are distributed via a row–wise pattern, the matrix response_m_a is distributed via a 
column–wise pattern and the matrix response_m_e is not distributed at all. There are 
many matrix-matrix multiplications in the JOREK code and their participating matrices 
have different distributions and different orders. Therefore, a suitable parallel matrix-
matrix multiplication subroutine is required covering the whole spectrum of distributed 
(column– or row–wise) or non distributed matrices. Such a subroutine named 
matrix_multiplication was successfully developed. The subroutine works for all types 
of distributed matrices and generates identical results in comparison with the original 
code version. 

Finally, the complete update_response subroutine was parallelized including the 
matrix-matrix operations as well as the matrix-vector calculations and matrix 
reassignments.   

3.5.3. Parallelization of the remaining part of the JOREK code 

The JOREK subroutines that include distributed matrices were parallelized next. We 
will not report in detail about each subroutine, because the parallelization procedure 
and the type of parallelization were very similar. The main difficulty was with 
sequential subroutines that were only called by the master MPI task. In the parallel 
version all tasks must call and enter these subroutines and corresponding changes 
for a correct execution were performed.  

Here is a list of all subroutines which were parallelized: get_vacuum_response, 
read_starwall_response, broadcast_starwall_response, log_starwall_response, 
update_response, coil_current_source, evolve_wall_currents, 
reconstruct_triangle_potentials, equilibrium, poisson, boundary_check, 
vacuum_equil, vacuum_boundary_integral. 

The accuracy of the modified subroutines was compared with the accuracy of the 
subroutines in the original code version. Both code versions (original and parallel) 
provide the same results with a relative error of 10-11. 

The parallel code version was also successfully tested for a production run using 
input matrices from STARWALL with a size of around 500 GB.  

3.5.4. OpenMP parallelization of the matrix multiplication 
subroutine 

During the performance tests described below it became clear that the matrix 
multiplication subroutine takes most of the computational time inside the 
read_starwall_response and update_response subroutines. Therefore, it was 
decided to implement an OpenMP parallelization on top of the MPI parallelization.  

Results obtained from the new MPI+OpenMP subroutine were compared with the old 
MPI version. They were identical up to a relative error of ~10-12. Afterwards the 
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execution time of the multiplication of the two largest matrices in the code was 
measured. This test had the following parameters: n_tor=11, n_period=1,  
n_plane=32, n_har=6, n_pol=160, nwu=nwv=300 and ntri_w=180000. Using 18 
computing nodes and 2 MPI tasks per node with 24 OpenMP threads the wall clock 
time was 6.6 s. This is 16.7 times faster in comparison to the old MPI version 
(110.7 s).  

3.6. Bugs in the original code version 
During the parallelization of the JOREK code a few bugs were found in the original 
code version and reported to the project coordinator. Among them use of uninitialized 
variables and wrong parameters in subroutines: 

1) The variables heat_src and part_src in the file diagnostic/integrals.f90 were 
without initialization for certain conditions.  

2) In the file vacuum/vacuum_response.f90 the variables: old_thick, old_res, 
old_tstep, old_theta, old_zeta, old_reswall were used without initialization. 
The main difficulty was that all these variables have the “save” attribute and 
the standard Intel Fortran debugging flag (-check uninit) can’t detect them.  

3) The variable vertical_FB in the file models/equilibrium.f90 was also used 
without initialization for certain conditions. 

4) A wrong parameter was used in the subroutine integrals. Instead of using the 
variable psi_bnd the variable psi_lim was used. This caused wrong output 
results for one particular diagnostics of the JOREK code. 

A few bugs were also found in the JOREK regression tests: 

1) In the file diagnostics/rst_hdf52bin.f90 and diagnostics/rst_bin2hdf5.f90 a call 
to the initialization subroutine update_time_evol_params  was missing. 

2) One minor bug is still not resolved in the regression test named 
freebound_equil_aug: “forrtl: error (65): floating invalid” appears for the 
following line: write(11,'(8e16.8)')  surface_list%psi_values(i),  dp_int/sum_dl, 
zjz_int/sum_dl, F0 * q / (2.d0 * PI). The project coordinator will resolve this 
issue after the current project.  

3.7. Merging different JOREK development branches 
At the end of the project three branches of the JOREK code: (i) develop – the main 
branch, (ii) feature/IMAS-668 – the branch for the current project and (iii) 
feature/IMAS-961-speed-up-boundary-int – the branch for speeding up the two most 
time consuming subroutines (implemented by the project coordinator) were merged. 
The resulting code version was tested for accuracy and performance (results are 
presented in the next section). Finally, a pull request on the git system was initiated 
in order to assign this code version as the main develop version. 

3.8. Performance tests 
In this section we compare the performance of the most important JOREK 
subroutines for three code versions: (i) develop – the main version; (ii) the speed up 
version described in Sec. 3.7 and (iii) the merge of develop, speed up and the 
version for the current project (JORSTAR2). Table 1 shows the execution time of 
three different test cases for these three code versions.  

One can see that the total wall clock time (last column) from the original develop 
version is much higher (depending on the test case) in comparison to the speed up 
and merge versions. For test case number three the develop version did not even 
finish within 24 hours of computation. On the other hand the speed up and merge 
versions provide very similar results for the test cases one and two. For test case 
number one the speed up version is a little bit faster in comparison to the merge 
version, while for test case number two the merge version takes the lead. Only the 
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merge version is able to run very large problem sizes due to the STARWALL 
response matrices being distributed over all MPI tasks. 

The performance improvement was mainly achieved in two subroutines named 
vacuum_boundary_integral and global_matrix_structure_vacuum. The computational 
algorithm was changed for the latter subroutine in a way which prevents an execution 
of the subroutine inside a loop. Therefore, it is called only once in the merge and the 
speed up version and 23 times in the develop version. One can also see the 
important improvement of the vacuum_boundary_integral subroutine, where the wall 
clock time of the develop version is 200–770 times higher in comparison to the wall 
clock time of the merge and the speed up version. This improvement was mainly 
achieved by reordering some nested loops (there are a total of 12 nested loops) 
inside an OpenMP region. 

The boundary_check subroutine was in some cases slower in the merge version in 
comparison to the develop and/or speed up version. Therefore, it was decided to 
implement an OpenMP parallelization for it as well. The project coordinator was 
responsible for this part. The subroutine after the improvement is about one order of 
magnitude faster using 48 OpenMP tasks in comparison to the original version.   

The merge code version works as fast as the speed up version and much faster than 
the original develop version. Moreover, the merge version can perform calculations 
with larger matrices due to the MPI parallelization and a global matrix distribution of 
the vacuum_response part of the JOREK code. This is the reason why test case 
number three fails in the develop and speed up version due to memory limitations. 
On the other hand, the merge version executes this test case without any problems. 
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1) Test case: n_tor=21, n_period=1,  n_plane=64, n_har=11, n_pol=120,  
nwu=nwv=64,  MPI=11, compute_nodes=11, OMP=48 

Code 
version 

 

vacuum 
boundary 
integral 

boundary
check 

update
response

global_matrix 
structure 
vacuum 

complete  
code 

develop 2329,27 3,44 21,55 8,74*23 54903 

speed up 5,89 1,04 21,01 0,62 1177 

merge  4,57 4,63 12,49 0,60 1308 

2) Test case: n_tor=21, n_period=1,  n_plane=64, n_har=11, n_pol=160, 
nwu=nwv=64, MPI=11, compute_nodes=11, OMP=48 

Code  
version 

vacuum 
boundary 
integral 

boundary
check 

update
response

global_matrix 
structure 
vacuum 

complete  
code 

develop 11147,05 8,74 92,05 19,46*10 >24 hours 

speed up 14,45 2,53 37,81 1,19 1883 

merge  9,91 6,20 22,54 1,03 1649 

3) Test case: n_tor=11, n_period=1,  n_plane=32, n_har=6, n_pol=160,  
nwu=nwv=330, MPI=48, compute_nodes=24, OMP=24 

Code  
version 

vacuum 
boundary 
integral 

boundary
check 

update
response

global_matrix 
structure 
vacuum 

complete  
code 

develop Not enough memory  

speed up Not enough memory 

merge  1,35 9,52 213,80 0,29 2385,00 

All values are given in seconds 

Table 1. The wall clock time in seconds of the most important JOREK subroutines for three 
different test cases for three code versions. 

3.9. Scalability tests 
We also tested how the computational time scales for the final merge version for 
different parameters of the code. Fig. 29 shows the wall clock time versus (a) the 
number of finite element triangles representing the wall, (b) versus the number of 
MPI tasks and (c) versus the number of the nodes in the poloidal direction in the 
JOREK grid. In test (a) we kept the number of MPI tasks=12 and n_pol=200 
constant; in test (b) we set ntri_w=100,000 and n_pol=200 and in test (c) we used 
MPI tasks=12 and n_pol =200.  

The total computational time for all test cases (even for production runs with 
ntri_w=300,000 or n_pol=300) and for any presented subroutine is not longer than 70 
seconds. These results are satisfactory as all these subroutines, except for the 
boundary_check, are called only once. The boundary_check subroutine is executed 
inside a small loop, however the calculation time of this subroutine is less than two 
seconds for a large production run which makes its influence on the total 
computational time relatively small. Besides, the parallelized read_starwall_response 
and matrix-matrix multiplication subroutine scale quite well. All obtained data, which 
is used for Fig. 29, is summarized in Table 2.  
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Fig. 29 Computational time in seconds of some JOREK subroutines versus different 
parameters of the code. The following constant parameters were used in all calculations: 
n_tor=11, n_period=1, n_plane=32, n_har=6. 

MPI ntri_w n_pol 
read starwall

response 
update 

response
Matrix–matrix 
multiplication 

boundary 
check 

12 10,000 200 1,19 19,65 9,06 0,10 
12 30,000 200 1,20 21,19 9,74 0,22 
12 100,000 200 7,24 31,77 14,88 0,88 
12 300,000 200 35,03 57,33 27,72 1,81 
6 100,000 200 9,96 68,47 34,32 0,64 

24 100,000 200 19,93 15,68 8,91 0,62 
12 100,000 100 6,47 8,18 3,68 0,32 
12 100,000 300 7,64 75,20 36,32 1,06 

Table 2 Computational time in seconds of the four parallelized subroutines in the JOREK-
STARWALL part.   

The execution time of one time step in the global loop was measured in the JOREK 
code with and without the STARWALL part in order to estimate the overhead of this 
part of the code (Fig. 30). The time of the JOREK-STARWALL run is about a factor of 
two higher in comparison to the pure JOREK run. It grows with increasing problem 
size, while the JOREK part stays constant (a). This is because the tested parameter 
(ntri_w) has no influence on the JOREK part.  

There are five nested subroutines in the JOREK-STARWALL part: 
construct_matrix → vacuum_baundary_integral → evolve_wall_currents →  
write_wall_vtk → reconstruct_triangle_potentials. It was measured that the time 
difference between the pure JOREK and the JOREK-STARWALL code version came 
mainly from the last two subroutines reconstruct_triangle_potentials and 
write_wall_vtk. For example, the execution time of the write_wall_vtk subroutine for 
the test case Fig. 30 (a) with ntri_w=300,000 is 21 seconds. In comparison the kernel 
loop of the vacuum_baundary_integral subroutine for this test case takes about two 
seconds. Thus, write_wall_vtk can be the first candidate for a future code 
optimization. All obtained data, which is used for Fig. 30, is summarized also in Table 
3.  
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Fig. 30 Computational time in seconds of one global loop step in the JOREK code with the 
STARWALL part (dashed blue line) and without (solid red line) versus different parameters of 
the code. The following constant parameters were used in all calculations: n_tor=11, 
n_period=1, n_plane=32, n_har=6. 

MPI ntri_w n_pol JOREK 
JOREK–

STARWALL
12 10,000 200 11,85 17,88
12 30,000 200 12,42 19,69
12 100,000 200 11,37 23,60
12 300,000 200 12,29 42,00
6 100,000 200 21,05 32,92

24 100,000 200 7,27 21,27
12 100,000 100 6,75  14,85  
12 100,000 300 17,17  33,60  

Table 3 Computational time in seconds of one global loop step in the pure JOREK and 
JOREK–STARWALL version. 

Additionally, a prediction for the memory consumption (total and per MPI task) was 
implemented in JOREK and STARWALL to help the user to choose the appropriate 
number of MPI tasks. 

4. Conclusions 
The STARWALL code has been analyzed for potential improvements and 
optimization by means of MPI parallel computation. It was found that for a large 
production run the whole code must be parallelized due to the lack of memory for 
saving the input/output matrices and due to the computational time. 

All sequential LAPACK subroutines were analyzed and selected for replacement by 
their parallel analogues from the ScaLAPACK library. All these subroutines were 
replaced in the final code version because of the required large input matrices size.  

The LAPACK subroutine for the eigenvector solver was replaced by the parallel 
subroutine counterpart from the ScaLAPACK library. A very good agreement was 
found in terms of the eigenvalues. In addition, the correctness of the results was 
proven by their consistency with the underlying physical model. The ScaLAPACK 
subroutine has shown better performance not only by using several processes in 
parallel but also in sequential mode due to the advantage of using IEEE arithmetics 
(optimization of arithmetic operation with ∞) [9, page 121]. Finally, good 
parallelization efficiency was obtained for this subroutine for large problem sizes.  

The subroutines matrix_ww, matrix_pp, matrix_wp and tri_induct were re-written in 
order to avoid the storage of the largest matrices in the code named dima and 
similar. This allows to save significant fraction of the memory that will bring the 
opportunity to perform calculations for larger problem sizes. The subroutines were 
parallelized with MPI taking into account the specific output index format for matrices 
which is necessary for ScaLAPACK subroutines. A good scalability was achieved for 
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all subroutines with a speed-up factor of more than 210 when 512 cores were 
involved in the computation.  

Finally, the complete code was parallelized including all LAPACK and user written 
subroutines. The new parallel version of the code provides identical results in 
comparison with the original code. This includes the part of the code handling the 
magnetic coils. The parallelized version allows production runs with much larger 
numbers of finite elements that allows to resolve realistic wall structure. The 
simulation time in such a case is less then 12 hours using 128 computing nodes on 
HELIOS.  

Different libraries (e.g. ScaLAPACK, HDF5 and MPI) were analyzed in order to find 
the best possible solution for parallel I/O. The MPI library was chosen as it can 
directly translate the format of the output submatrices from the block-cycling 
distribution to an ordinary format during the writing procedure.  

MPI parallel I/O was implemented in both the STARWALL output and the JOREK 
input subroutines. The execution time of the complete reading and writing procedure 
for a production run is only up to a few minutes when using 16 and 64 computing 
nodes.  

During the development, a bug was found in the Intel MPI library that significantly 
limits the size of the read/written data per operation. It was reported to the Intel 
support team and should be corrected within the next version of the library. In order 
to be able to work with large matrices and to overcome this bug, several subroutines 
were modified using a workaround.  

All sequential subroutines in JOREK that use distributed matrices from the 
STARWALL input file were parallelized and tested. All of them provide identical 
results in comparison to the original code version. 

The final version of the code, achieved during this project, was merged with the 
develop branch and with the speed up version of the code (where loops had been re-
ordered in order to speed up the code). The final code version provides results much 
faster than the develop version and can work with very large matrices from 
STARWALL output.   
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