

B. Vanovac^{1*}, E. Wolfrum², F. Mink², S. S. Denk², G. Harrer³, P. Manz², F. M. Laggner³, M. G. Dunne², M. G. Dunne², M. Willensdorfer², M. Hoelzl², F. Orain², N. C. Luhmann Jr.⁶, the ASDEX Upgrade Team and the EUROfusion MST1 Team⁷

¹ DIFFER, Dutch Institute for Fundamental Energy research, The Netherlands

- ² Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany
- ³ Institute of Applied Physics, TU Wien, Fusion@OAW, 1040 Vienna, Austria

Introduction

- ECEI measures electron temperature and its fluctuations.
- H-mode discharges, Bt = -2.5 T, Ip = 800 kA.
- Different edge diagnostics at AUG shows the mode between the ELMs.
- Lithium Beam Emission Spectroscopy (Li-BES), ECE, ECEI single low frequency mode ~ 10 kHz.
- Magnetic pick-up coils measure multiple modes in the high frequency range.

•Edge plasma optically thin = radiation transport effects and geometry of the ECEI have to be taken into account. •ECFM [1] calculates warm resonances of the ECEI system.

Characterization of the low frequency mode using ECEI

a) The low frequency mode propagates from the bottom to the top along the flux surface. Mode induces about 10 % variation in the radiation temperature. Such poloidally resolved measurements enable the determination of the poloidal velocity. b) Using the cross correlation function between the reference channel at z = -0.1 m and all the other channels, measured velocity of the mode is $v \sim 3$ km/s.

*Corresponding Author: B.Vanovac@differ.nl

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

ECEI and magnetic measurements during inter-ELM modes

- ⁴ Physik-Department E28, Technische Universitat München, 85748 Garching, Germany
- ⁵ Department of Atomic, Molecular, and Nuclear Physics, University of Seville, Seville, Spain
- ⁶ Department of Applied Science, University of California at Davis, Davis, CA 95616, USA

- numbers 8,9,10 [4].

- with zero phase.

⁷ See author list of "H. Meyer et al. Nuc. Fusion 57 102014 "