

www.cea.fr

ROfusion

Modelling of gas penetration, MHD activity and Runaway Electrons in disruptions mitigated by massive gas injection

> C. Sommariva, E. Nardon, A. Fil, M. Hoelzl, G. Huijsmans and JET contributors

TSD Workshop, PPPL, Princeton, 20-22 July, 2016

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- The simulated experiment: MGI-triggered disruption in JET 86887
- Investigating different parts of the physics with different modelling tools:
 - **Gas penetration physics** IMAGINE 1D fluid modelling
 - **MHD** aspects JOREK 3D non-linear reduced MHD modelling
 - Runaway electron generation JOREK + test particles modelling

The simulated experiment: JET pulse 86887 (Ohmic, 2 MA, 2 T, q₉₅=2.9)

Gas penetration physics -IMAGINE modelling

IMAGINE = fluid dynamics (gas) + profiles evolution (plasma)

Geometry = 1D radial, slab
Fluid dynamics: Euler equations

$$\begin{aligned}
\partial_t n_n &= -\partial_r (n_n V_n) - n_e n_n I + n_e^2 R \\
\partial_t (m_n n_n V_n) &= -\partial_r (m_n n_n V_n^2 + P_n) - n_n n_e (I + \sigma_{cx} V_{cx}) m_n V_n \\
\partial_t (\frac{3}{2} P_n + \frac{1}{2} m_n n_n V_n^2) &= -\partial_r (\frac{5}{2} P_n V_n + \frac{1}{2} m_n n_n V_n^3) - n_n n_e (I + \sigma_{cx} V_{cx}) (\frac{3}{2} P_n / n_n + \frac{1}{2} m_n V_n^2) \\
&+ n_e (n_e R + n_n \sigma_{cx} V_{cx}) \frac{3}{2} e^T_i \quad \text{Charge exchange} \to \text{Energy} \\
&\text{and momentum transfer}
\end{aligned}$$

Plasma profiles:

 $\partial_t n_e = n_e n_n I - n_e^2 R + \partial_r (D \partial_r n_e)$

Only « free » parameters (but small effect)

between ions and neutrals

$$\partial_t (\frac{3}{2}n_e eT_e) = -n_e (n_n I E_{ion} + n_n L_{lines} + n_e R \frac{3}{2} eT_e) - n_e^2 L_{brem+rec} + \partial_r (\chi n_e \partial_r (eT_e))$$

$$\partial_t (\frac{3}{2}n_e eT_i) = \frac{3}{2} n_e (I P_n - n_e ReT_i - \sigma_{cx} V_{cx} (n_n eT_i - P_n)) + \partial_r (\chi n_e \partial_r (eT_i))$$

Simulation domain = plasma + vacuum + reservoir

- \rightarrow Rarefaction wave with first particles travelling at 3c_{s.res}
 - Known analytic solution [Bozhenkov NF 2011]
 - 3D modelling gives results similar to 1D [Nkonga 2016]

Synthetic interferometry shows that IMAGINE gets the right order of magnitude

Absence of MGI effect on runaway beam in JET could be due to lack of gas penetration

- 2nd injection to mitigate RE beam is considered for ITER
- Works on Tore Supra [Saint-Laurent FST 2012], DIII-D [Hollmann NF 2013] and ASDEX Upgrade [Pautasso, previous talk] but no effect on JET! [Reux NF 2015]
- A possible explanation supported by IMAGINE simulations: RE beam may be "shielded" by the high density background plasma

MHD aspects -JOREK modelling

JOREK is a 3D non-linear reduced MHD code [Huysmans NF 2007]
 [Czarny JCP 2008] so far mainly applied to ELMs [Pamela EPS 2015]
 JOREK is however well suited also for MGI modelling

Equations of the D₂ MGI model in JOREK:

Neutral density:
$$\frac{\partial \rho_n}{\partial t} = \nabla \cdot (\boldsymbol{D}_n : \boldsymbol{\nabla} \rho_n) - \rho \rho_n S_{ion} + \rho^2 \alpha_{rec} + S_n$$

Ion density:
$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \boldsymbol{v}) + \nabla \cdot (D_\perp \boldsymbol{\nabla}_\perp \rho + D_\parallel \boldsymbol{\nabla}_\parallel \rho) + \rho \rho_n S_{ion} - \rho^2 \alpha_{rec}$$

(+ 6 other equations)

Important features:

- S_n = volumetric source of neutrals localized at the edge, outer midplane
- Ionization and recombination using coefficients from ADAS
- Neutral transport is diffusive
- Resistivity $\eta = \eta_0 (T_0/T)^{3/2}$

- Resistivity η ~ 2-20 times Spitzer
- // heat conductivity $\chi_{//} \sim 10$ times smaller than Spitzer-Härm

D_⊥ ~ χ_{\perp} ~ 1 m²/s ~ typical turbulent value

- Treat n=0-5 toroidal Fourier components
- ~3000 elements in the poloidal plane (n_flux = 51, n_theta = 64)

Divergence of LoS 2 and 3 = 3D effect

t = 0 ms

t = 4.1 ms: pre-TQ phase

t = 5.7 ms: beginning of the TQ

t = 6.2 ms: end of the TQ

Let's try to understand what happens. But first... A quick introduction to tearing mode physics

- Tearing Modes (TM) are related to rational q surfaces (e.g. q=2, 3/2, ...)
- TM change the magnetic topology (reconnection), forming magnetic islands
- Important driving mechanisms for TM:
 - Current profile
 - Local suppression of current

<u>Note</u>: Slab configuration \rightarrow X-point at missing j position **but** Tokamak configuration \rightarrow O-point at missing j position

Consequences of TM:

- Flattening of T in the island
- Flattening of j in the island

Cea

The thermal quench seems to be triggered by a current profile avalanche effect

■ Island overlap → magnetic stochasticity → TQ

What starts the avalanche? i.e. how does MGI generate the 2/1 island?

One may think of (at least) 3 mechanisms:

- 3D equilibrium: MGI changes pressure field, j and B need to adjust so as to maintain j x B = ∇p
- **Resistivity effects:**
 - Current profile effect: MGI \rightarrow penetration of a cold front with a large $\eta \rightarrow$ contraction of current profile \rightarrow drive for 2/1 tearing mode
 - Local current suppression effect: MGI → localized cooling and increase in η → localized drop of j → magnetic island with O-point at MGI position

Numerical experiments with JOREK allow discriminating between the different mechanisms

- \Rightarrow Initial growth not related to η effects
- ⇒ Provides a small seed from which island grows via η-related mechanisms ⇒ Local current suppression effect plays an important role In JOREK simulations, the island O-point is indeed at the MGI deposition
- point, as observed experimentally [Lehnen NF 2015]

2.2

2.1

1.9

1.8

1.7

1.6

0

2

- I_p spike = characteristic sign of the TQ
- Classic explanation: TQ releases magnetic energy ($\sim I_i I_p^2$) at constant $\Psi_b \sim L_p I_p$ (because $\tau_{TQ} << \tau_{wall}$) $\rightarrow I_i \downarrow$ and $I_p \uparrow$
- JOREK simulations are consistent with this explanation
- **I** However, ΔI_p is too small in simulations
- \rightarrow Probably too weak MHD in these simulations
- Effects which could strengthen the MHD (e.g. background impurities) are under investigation

I_p (MA)

L_pI_p (Wb/rad)

0.5 l, l² (MA²)

0.5 E_{mag} (MJ

Runaway generation physics -JOREK + test particles modelling

Context: most of the works on REs dynamics is conducting using equilibrium magnetic fields

Objective: understand the runaway electrons dynamics at the presence of disruption induced magnetic perturbations

Method: Simulating runaway trajectories in disruption MHD fields obtained by JOREK (particle test approach)

Development 1: development of the relativistic particle tracking module inside JOREK code

Analysis 1: study of the transport and diffusion phenomena caused by electromagnetic fluctuations

Development 2: Add Coulomb collisions among the test particles and the background plasma. Add particle radiation physics in the model

Analysis 2: study of the drag due to collisions and radiation/study of the diffusion due to collisional scattering

Guiding-center approach: expansion of the electron gyromotion: bigger time steps with respect to full orbit simulation and smaller memory consumption (reduced phase space)

Validity conditions: electromagnetic fluctuations time and space scales are much bigger than particle gyromotion. The particle displacement in the magnetic direction is smaller than the parallel electromagnetic variation length scale

$$\frac{d\vec{R}}{dt} = \frac{1}{\hat{b} \cdot \vec{B}^*} (q\vec{E} \times \hat{b} - p_{/\!/} \frac{\partial \hat{b}}{\partial t} \times \hat{b} + \frac{\mu \hat{b} \times \nabla B}{\gamma} + \frac{p_{/\!/} \vec{B}^*}{m\gamma})$$
$$\frac{dp_{/\!/}}{dt} = \frac{\vec{B}^*}{\hat{b} \cdot \vec{B}^*} \cdot (q\vec{E} - p_{/\!/} \frac{\partial \hat{b}}{\partial t} - \frac{\mu \nabla B}{\gamma})$$
$$\text{avec } \vec{B}^* \equiv p_{/\!/} \nabla \times \hat{b} + q\vec{B} \text{ et } \gamma \equiv \sqrt{1 + (\frac{p_{/\!/}}{mc})^2 + \frac{2\mu B}{mc^2}}$$

Numerical Method: Runge-Kutta 4(5) with time-space interpolations of the magnetohydrodynamic fields obtained by JOREK.

[Cary, Rev. Mod. Phys., 2009]

BENCHMARK AND CODE VERIFICATION

Conservation of the constant of motion after a physical time of: 1(ms) Passing particle (initial energy: 10(MeV)):

• Total energy: $6 \cdot 10^{-3}$ %, canonical toroidal momentum: $6 \cdot 10^{-1}$ % Trapped particle (initial energy: 10(keV)):

• Total energy: $6 \cdot 10^{-6}$ %, canonical toroidal momentum: $8 \cdot 10^{-7}$ %

Lorentz's Equations:

$$\frac{d\vec{x}}{dt} = \frac{\vec{p}}{m\gamma}, \quad \frac{d\vec{p}}{dt} = q\left(\vec{E} + \frac{\vec{p}}{m\gamma} \times \vec{B}\right), \quad \gamma = \sqrt{1 + \frac{\vec{p} \cdot \vec{p}}{(mc)^2}}$$

 Equations of motion are integrated using the symplectic algorithm called Volume Preserving Scheme (VPA) [Zhang, PoP, 2015]

Conservation of the constant of motion after a physical time of: 2.5(µs) Passing particle (initial position: LFS –mid plane, energy: 10(MeV), pitch angle: 45(°)):

• Total energy: $4 \cdot 10^{-11}$ %, canonical toroidal momentum maximum fluctuation: 2%

FIRST RESULTS

cea

Proof of principle 1: particle dynamics in a disruption having an internal kink mode:

- Particle initialization: $\tilde{\psi}_{eq} = 0.1$, $\varphi = 0(^{\circ})$, $\theta = 10(^{\circ})$ counter current, 1000 particles
- Warning: *I_p* spike much smaller than the real experimental one → The MHD activity might be underestimated

CEA FIR

Proof of principle 1: particle dynamics in a disruption having an internal kink mode:

• Fraction of lost population due to magnetic chaos

Fraction of lost particles

Computation of particle advection and diffusion coefficient is underway

22 How does MHD activity impact RE formation?

Proof of principle 2: particle dynamics in a disruption without an internal kink mode:

- Particle initialization: $3.4 \le R(m) \le 3.41$, $0.2162 \le Z(m) \le 0.2262$, $\varphi = 0(^{\circ})$, $E_{kin} = 1(\text{keV})$, $\theta = 10(^{\circ})$ counter current, 1000 particles
- After TQ, ~5% of the electrons remain confined in the core

Proof of principle 2: particle dynamics in a disruption without an internal kink mode:

• Warning: No collisional or radiation operator:

 \rightarrow Acceleration might be overestimated

Kinetic Energy

SUMMARY AND FUTURE WORK

Gas penetration is hindered by heat and momentum exchange between plasma and neutrals due to atomic physics
 JOREK simulations suggest the following picture for MGI-triggered disruptions:

- Too small I_p spike probably indicates too weak MHD in present simulations
 A small fraction of electrons might survive the thermal quench
 Perspectives:
 - Improve quantitative match for JOREK D₂ MGI simulations
 - JET and ASDEX Upgrade
 - Simulate non-D₂ MGI with JOREK (model ready)
 - Apply JOREK + test electrons to understand RE formation
 - Simulate SPI with JOREK

BACKUP SLIDES

de la recherche à l'industrie

Including charge exchange (and rec.), gas penetration is significantly reduced

- Much slower penetration (consistent with TQ onset time)
 - Neutrals are heated by ions which creates a shock wave and strongly brakes the incoming gas

- ITER Disruption Mitigation System (DMS) planned to be a hybrid Massive Gas Injection (MGI) Shattered Pellet Injection (SPI) system
- Practical questions for the design of the DMS are connected to more fundamental physics questions, e.g.:
 - How to minimize radiation asymmetries? → How do MGI/SPI and MHD activity interact?
 - How to avoid runaway electrons (RE)?
 → What mechanisms determine RE formation during disruptions?
 - If an RE beam appears, will MGI be able to reach it for dissipation? → What mechanisms determine gas penetration?

Modelling is needed to gain the necessary physical understanding

Quite a few MGI modelling works have been published ASTRA [Leonov PPCF 2005] [Fable NF 2016], TOKES [Landman FED 2011] [Petschanyi FED 2012], SOLPS [Pautasso IAEA 2008], NIMROD [Izzo NF 2011]

However, fuelling efficiency (≡ΔN_{e,plasma}/N_{e,reservoir}) is not predicted for various reasons, e.g.:

- Simulations do not include gas dynamics
- Gas transport is treated as a diffusion

In reality,

- **Gas dynamics matters**
- Gas transport is fundamentally convective

The IMAGINE code has been designed to address these points