Deuterium MGI in ASDEX Upgrade Geometry (First Preliminary Results)

M. Hoelzl, G. Pautasso, E. Nardon

1 Experiments at ASDEX Upgrade

- 2 Deuterium MGI Simulations
- 3 Scans Performed
- Observed Dynamics
- 5 Summary & Outlook

- 2 Deuterium MGI Simulations
- 3 Scans Performed
- Observed Dynamics
- 5 Summary & Outlook

- MGI experiments have been carried out in the past with Deuterium, Argon, etc with very different amounts of gas
- New experiments could possible within the MST1 campaign or the internal program
- It seems possible to run simulations at fully realistic ASDEX Upgrade parameters
 - Low dominant mode numbers
 - High densities
 - Temperatures strongly decreasing, i.e., resistivity increasing

1 Experiments at ASDEX Upgrade

2 Deuterium MGI Simulations

- 3 Scans Performed
- 4 Observed Dynamics
- 5 Summary & Outlook

Simulations

Overview

ASDEX Upgrade equilibrium

 $q_0 = 1.1, \, n_0 = 6 \cdot 10^{19} \text{m}^{-3}, \, \text{B}_0 = 2.5 \text{T}, \, \text{I}_p = 1 \text{MA}$

No current source

- No "regular" particle source
- (uniform heat source should have been switched off...)
- Neutrals source at outboard midplane (toroidally weakly localized)
- Taylor-Galerkin stabilization
- Hyperresistivity/viscosity very low
- ▷ gmres_tol=1.e-5...1.e-7
- Moderate poloidal grid resolution
- Most cases with n=0,1,2; Some with n=0,1 and n=0,1,2,3
- Low resistivity

eta = 3e-8 visco = 3e-7 tauIC = 5e-3 Zkpar = 1e3 n_tor = 5

- Scans performed:
 - Amount of Gas p
 - Resistivity eta
 - Viscosity visco
 - Diamagnetic Drift tauIC
 - Parallel Heat Conductivity ZKpar
 - (Poloidal/toroidal resolution, source localization)

Scans

Convergence

- ▷ Number of toroidal harmonics does not influence early phase significantly
- $\triangleright~$ Toroidally more localized neutrals source \rightarrow n=1 field perturbation remains dominant, perturbation increases (detailed comparison required)

Particle Content

 Injection pressure 0.00...2.35 bar (not directly comparable to experimental valve pressure)

The Simulation Zoo

- Injection pressure has strong influence on disruption onset
- But other parameters also important
- Roughly 50 cases ("spikes" disappear with smaller time steps)

Resistivity

Resistivity can easily make the difference between immediate disruption, delayed disruption, and no disruption at all

Scans

Viscosity Dependency

- Viscosity delays rise of perturbation
- Suppression for small gas amounts
- Small influence for large amounts of gas

Diamagnetic Drift

- Diamagnetic drift delays rise of perturbation
- Saturation levels also affected
- Small influence for large amounts of gas

Parallel Conductivity

Parallel conductivity has a slightly stabilizing effect

1 Experiments at ASDEX Upgrade

2 Deuterium MGI Simulations

3 Scans Performed

4 Observed Dynamics

5 Summary & Outlook

Dynamics with $q_0 > 1$

- ▷ Dilution: density increases, temperature drops, pressure not affected much
- ▷ Islands and stochastisation of outer plasma, further temperature drop
- \triangleright Drop of q_0 , crash of the center
- Instabilities loose drive and drop in amplitude
- Ohmic heating leads to some re-heating

Central Crash

- Drop of core temperature five within a few hundred microseconds
- Central q close to 1 at crash
- No current spike

Central Crash

- Drop of core temperature five within a few hundred microseconds
- Central q close to 1 at crash
- No current spike

Central Crash

- Drop of core temperature five within a few hundred microseconds
- Central q close to 1 at crash
- No current spike

Central Crash

- Drop of core temperature five within a few hundred microseconds
- Central q close to 1 at crash
- No current spike

Central Crash

- Drop of core temperature five within a few hundred microseconds
- Central q close to 1 at crash
- No current spike

Thermal Quench

- ▶ t=5340, 5740, 6140
- $\,\triangleright\,$ Sudden loss of core confinement: $T_e = 2 keV \rightarrow 500 eV$
- Impurity radiation should be important

1 Experiments at ASDEX Upgrade

2 Deuterium MGI Simulations

3 Scans Performed

4 Observed Dynamics

5 Summary & Outlook

Summary & Outlook

- Deuterium MGI simulations for ASDEX Upgrade
- Realistic parameters seem feasible
- Important role of resistivity and diamagnetic rotation
- Could be interesting for validation of non-deuterium MGI: Existing experiments with different amounts of gas; future dedicated experiments; parameters easier to achieve than JET
- PhD on natural and mitigated disruptions planned (M. Hoelzl and G. Pautasso); strong collaboration with G. Huijsmans and E. Nardon including several visits to Cadarache foreseen, master student at ASDEX Upgrade could be a candidate