Non-Linear MHD Simulation with JOREK on HELIOS-CSC

S. Pamela G.Huijsmans, M.Hoelzl, M.Becoulet, F.Orain, F.Liu, A.Fil, E.Nardon, J.Morales, A.Lessig, I.Krebs ...

EUROfusion

HELIOS-CSC Review Meeting, 15 March 2016

Outline

- Presentation of the JOREK code

www.jorek.eu The JOREK team Eurofusion ENR project Numerical details The reduced-MHD model Running JOREK on HELIOS-CSC

- Physics Results 2015

ELMs RMP Pellets QH-mode MGI disruptions

- Conclusion Summary Future work

02/28

S.Pamela

HELIOS-CSC Review Meeting

Outline

- Presentation of the JOREK code

www.jorek.eu The JOREK team Eurofusion ENR project Numerical details The reduced-MHD model Running JOREK on HELIOS-CSC

- Physics Results 2015 ELMs RMP Pellets QH-mode MGI disruptions

- Conclusion Summary Future work

03/28

S.Pamela

HELIOS-CSC Review Meeting

www.jorek.eu

JOREK website, including

- References
- Team members
- wiki (restricted)
- Forum (restricted)

HELIOS-CSC Review Meeting

15/03/2016

SULLIAN CONTACT

The JOREK Team

> 30 members
> 10 international institutions
Includes physicists and mathematicians
Strong collaboration with PaStiX team (direct solver) [ref]

The Present JOREK Team (alphabetical)

- Calin Atanasiu
- Marina Bécoulet
- Pavel Cahyna (website)
- Celine Caldini-Queiros (website)
- Jose Costa
- Guilhem Dif-Pradalier
- Elise Estibals
- · Alexandre Fil (website)
- Emmanuel Franck (website)
- Shimpei Futatani
- Virginie Grandgirard
- Herve Guillard
- Florian Hindenlang
- Matthias Hoelzl (website)
- Guido Huijsmans (website)
- Xavier Lacoste
- Guillaume Latu (website)

- Alexander Lessig
- Feng Liu
- Jorge Morales
- Eric Nardon
- Boniface Nkonga
- Francois Orain
- Stanislas Pamela
- Chantal Passeron
- Jane Pratt (website)
- Ahmed Ratnani (website)
- Afeintou Sangam
- Cristian Sommariva
- Eric Sonnendrücker (website)
- Erika Strumberger
- Daan van Vugt
- Egbert Westerhof

05/28

S.Pamela

HELIOS-CSC Review Meeting

Eurofusion ENR Project

PI: M.Hoelzl over 10 *ppy* ~ 450 *k*€ / year Progress is on schedule

2. Project deliverables

Deliverables planned for 2015	Achieved?	Evidence // Reason for partial or non-achievement
Status report after one year	Fully	at hand
First JOREK simulation of non-deuterium massive	Partly	Model has been derived but implementation was delayed
gas injection (MGI)		by \sim 3-6 months. Reason: the following new deliverable.
Investigation of gas penetration with the IMAGINE	Fully	Refereed article submitted [5]; This turned out to be
code (New deliverable)		important to improve and validate the JOREK MGI model
First JOREK simulation of a complete thermal	Fully	Presentations [23,24]; Publication in preparation
quench (Originally planned for 6/2016)		
First JOREK simulation of an ELM cycle with a	Fully	First successful non-linear simulations have been carried
realistic boostrap current model		out; publication in preparation (will take time)
First JOREK simulation of an ELM crash with high	Partly	Model successfully implemented and tested; application to
recycling divertor conditions		ELM simulations has been started
Analytical and numerical study of ELM precursors	Fully	Refereed article submitted [10]
and filaments in rotating plasmas		
Implementation of Newton iterations for the time	Fully	Refereed article [8]
stepping		
Study of stability and theoretical properties of	Fully	Report in preparation
reduced MHD with two-fluid effects		
Report on the implementation of new	Fully	Documented in jorek.eu wiki; updated through user's
development workflows		feedback

HELIOS-CSC Review Meeting

Numerical Details

Full domain with core, SOL and X-point :

- Cubic finite-elements
- Flux-aligned poloidal grid
- Fourier series in toroidal direction

[G.Huysmans, Nuc.Fus. 2007] [O.Czarny, Journ. Comp. Phys. 2008]

Implicit time-stepping :

- Crank-Nicolson & Gears schemes
- Time step depends on MHD activity only
- GMRES iterative solver
- Physical preconditioner using sub-matrices solved With Sparse-matrix solver PastiX

[P.Henon, Parallel Comput. 34 (2008)]

JET grid

HELIOS-CSC Review Meeting

Reduced MHD Model

$$\begin{bmatrix} \textbf{H. Strauss, Phys. Fluids 19 134 (1976)} \\ \vec{B} &= \vec{B}_{\phi} + \vec{B}_{p} = \frac{F_{o}}{R}\vec{e}_{\phi} + \frac{1}{R}\nabla\psi\times\vec{e}_{\phi}, \\ \hline \textbf{perp. momentum} \\ \hline \rho \frac{\partial \vec{v}_{E}}{\partial t} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{J} \times \vec{B} + \mu \nabla^{2} (\vec{v}_{E} + \vec{v}_{*i}) \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{J} \times \vec{B} + \mu \nabla^{2} (\vec{v}_{E} + \vec{v}_{*i}) \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{J} \times \vec{B} + \mu \nabla^{2} (\vec{v}_{E} + \vec{v}_{*i}) \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{J} \times \vec{B} + \mu \nabla^{2} (\vec{v}_{E} + \vec{v}_{*i}) \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{J} \times \vec{B} + \mu \nabla^{2} (\vec{v}_{E} + \vec{v}_{*i}) \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{J} \times \vec{B} + \mu \nabla^{2} (\vec{v}_{E} + \vec{v}_{*i}) \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{v}_{*i} \cdot \vec{v}_{*i} \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{v}_{E} \cdot \vec{v}_{*i} \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{v}_{E} \cdot \vec{v}_{*i} \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{v}_{E} \cdot \vec{v}_{E} + \vec{v}_{E} \cdot \vec{v}_{*i} \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{*i} \cdot \nabla \vec{v}_{E} - \nabla_{\perp}p + \vec{v}_{E} \cdot \vec{v}_{E} + \vec{v}_{E} \cdot \vec{v}_{E} \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{E} \cdot \nabla \vec{v}_{E} + \vec{v}_{E} \cdot \vec{v}_{E} \cdot \vec{v}_{E} + \vec{v}_{E} \cdot \vec{v}_{E} \\ \hline \textbf{v}_{E} = - \rho \vec{v}_{E} \cdot \nabla \vec{v}_{E} + \vec{v}_{E} \cdot \vec{v}_{E} \cdot \vec{v}_{E} \cdot \vec{v}_{E}$$

par. momentum

$$\rho \frac{\partial \vec{\mathbf{v}}_{\parallel}}{\partial t} = -\rho \vec{\mathbf{v}}_{\parallel} \cdot \nabla \vec{\mathbf{v}}_{\parallel} - \nabla_{\parallel} p + \mu \nabla^2 \left(\vec{\mathbf{v}}_{\parallel} - \vec{\mathbf{v}}_{NBI} \right)$$

Ohm's law

$$\frac{\partial \psi}{\partial t} = \eta \left(j - j_A \right) + R \left[\psi, \Phi \right] - \frac{\delta^* R}{\rho} \left[\psi, p \right] - \frac{\partial \Phi}{\partial \phi} + \frac{\delta^*}{\rho} \frac{\partial p}{\partial \phi}$$

Continuity

$$\frac{\partial \rho}{\partial t} = - \nabla \cdot (\rho \vec{\mathbf{v}}_{tot}) + \nabla \cdot (D_{\perp} \nabla_{\perp} \rho) + S_{\rho}$$

$$j = -R^2 \nabla \phi \cdot \boldsymbol{J} = \frac{1}{\mu_0} \Delta^* \psi$$
$$p = \rho T$$

Energy

$$\rho \frac{\partial p}{\partial t} = - \vec{\mathbf{v}}_E \cdot \nabla p - \gamma p \nabla \cdot \vec{\mathbf{v}}_E + \nabla \cdot \left(\kappa_\perp \nabla_\perp T + \kappa_\parallel \nabla_\parallel T \right) + S_T,$$

JOREK on HELIOS

Typical job size:	20,000 poloidal elements 5 harmonics 50 nodes ~240 hours → ~12,000 node.hours
Large job size:	30,000 poloidal elements 15 harmonics 150 nodes ~200 hours → 30,000 node.hours
XL job size:	20,000 poloidal elements 20 harmonics ~300 nodes (short tests)

Outline

- Presentation of the JOREK code

www.jorek.eu The JOREK team Eurofusion ENR project Numerical details The reduced-MHD model Running JOREK on HELIOS-CSC

- Physics Results 2015 ELMs RMP Pellets

QH-mode MGI disruptions

- Conclusion Summary Future work

10/28

S.Pamela

HELIOS-CSC Review Meeting

Devices Simulated

Edge-Localised-Modes

ELMs are necessary for impurity flush-out

But they also need to be controlled due to large divertor heat-fluxes

→ Strong need to understand ELMs

12/28

S.Pamela

HELIOS-CSC Review Meeting

Validation: Comparison Against Experimental Data

In order to predict ELMs in future devices, simulations must be validated \rightarrow Quantitative comparison against experimental data

Main comparisons of interest:

ELM energy losses ELM duration Divertor heat-fluxes

Quantitative validation started on JET, to be extended to multi-machines

13/28

S.Pamela

HELIOS-CSC Review Meeting

Toroidal Resolution Required for ELMs

- Large number of toroidal harmonics is important for good ELM representation
- Low mode numbers are linearly sub-dominant, but non-linearly excited
- \rightarrow poloidally and toroidally localised filaments

14/28

S.Pamela

HELIOS-CSC Review Meeting

From Validation To Prediction

Predictions should include divertor heat-fluxes and ELM energy losses

But also ELM onset information, relevant to pedestal confinement

15/28 S.Pamela

HELIOS-CSC Review Meeting

The Importance of Diamagnetic Terms

Diamagnetic effects stabilise high-n mode numbers They induce filament rotation They enable multiple ELM-cycle simulations

16/28 S.Pamela

HELIOS-CSC Review Meeting

Filament Rotation

Filament rotation observed experimentally Reproduced by simulations when diamagnetic terms are included Filament rotation spreads heat-flux on divertor

17/28 S

S.Pamela

HELIOS-CSC Review Meeting

Diamagnetic Terms & Multiple ELM Cycles

Diamagnetic terms necessary to reproduce multiple ELM cycles Necessary to reproduce inner/outer balance of divertor heat fluxes

[F.Orain, PRL 114 (2015)]

18/28 S

S.Pamela

HELIOS-CSC Review Meeting

Mitigation of ELMs by RMPs

RMP simulations reproduce the mitigation of ELMs Lobes observed near the X-point, like in MAST experiments

[M.Becoulet, PRL 113 (2014)]

Mitigation of ELMs by RMPs

- Simulation of density pump-out are progressing

- Mitigation more efficient if applied perturbation is amplified by excitation of modes at plasma edge

- → larger corrugation at X-point
- \rightarrow larger lobes
- → larger pump-out

0.8

1.0

0.6

0.4

S.Pamela

20/28

HELIOS-CSC Review Meeting

8.2

0.4

0.6

0.8

15/03/2016

1000

0.2

Pellet-Triggered ELMs

Simulations done on several devices, using various pellet injection locations Pellet ablates as it enters the plasma, density cloud propagates along flux tube Ballooning modes are excited, and ELM is triggered

21/28

S.Pamela

HELIOS-CSC Review Meeting

Pellets (2)

Simulations for small and large pellets on JET ELM clearly triggered by large pellet. Divertor heat flux is split (also observed experimentally)

22/28

S.Pamela

HELIOS-CSC Review Meeting

QH-mode Simulations

- QH-mode simulations for DIIID
- Saturated kink-peeling mode at the plasma edge
- Edge Harmonic Oscillation (EHO) causes density losses
- Rotation frequency agrees with experiments
- n=1 dominant mode

[F.Liu, Nuc.Fus 55 (2015)]

23/28 S.Pamela

HELIOS-CSC Review Meeting

Mitigation of Disruptions with MGI

24/28

Mitigation of Disruptions with MGI

- More work needed to push resistivity closer to experimental values \rightarrow try to match agreement with magnetic probes

25/28 S.Pamela

HELIOS-CSC Review Meeting

ITER Simulations

26/28

HELIOS-CSC Review Meeting

Summary

- Please visit www.jorek.eu !
- Large JOREK team across Europe
- Eurofusion ENR project is progressing well
- ELMs simulation close to quantitative validation
- Now working on multiple type-I ELM cycles
- Mitigation of ELMs by RMPs is coming closer to experiments
- Pellet-triggered ELM simulations already achieved on many devices
- First non-linear QH-mode simulations show good agreement with DIIID
- MGI disruptions have successfully reproduced thermal quench

Acknowledgments

THANK YOU!

Many Thanks to the CSC-team on behalf of all HELIOS users.

HELIOS has enabled the JOREK team to obtain many important results in the last years!

28/28 S.Pamela

HELIOS-CSC Review Meeting

References/Acknowledgements

References:

- Huysmans GTA and Czarny O., Nucl. Fusion 47, 659 (2007)
- Czarny O and Huysmans G., J. Comput. Phys. 227, 7423 (2008)
- Henon P, Ramet P and Roman J, Parallel Comput. 34 345-62 (2008)
- H. Strauss, Phys. Fluids 19 134 (1976)
- Huysmans GTA, Plasma Phys. Control. Fusion 47 (2005) 2107–2121

- Pamela S., Eich T., Frassinetti L., Sieglin B., Saarelma S., Huijsmans G., Hoelzl M., Becoulet M., Orain F., Devaux S., Chapman I., Lupelli I., Solano E., and JET Contributors. Plasma Physics and Controlled Fusion 58, 014026 (2015)

- Hoelzl M, Günter S, Wenninger RP, Mueller W-C, Huysmans GTA, Lackner K, Krebs I, ASDEX Upgrade Team, Phys. Plasmas, 19, 082505 (2012)

- Krebs I, Hoelzl M, Lackner K, Günter S., Phys, Plasmas, 20, 082506 (2013)

- Orain F, Bécoulet M, Huijsmans GTA, Dif-Pradalier G, Hoelzl M, Morales J, Garbet X, Nardon E, Pamela S, Passeron C, Latu G, Fil A, Cahyna P., Phys. Rev. Lett. 114, 035001 (2015)

- Bécoulet M, Orain F, Huijsmans GTA, Pamela S, Cahyna P, Hoelzl M, Garbet X, Franck E, Sonnendrücker E, Dif-Pradalier G, Passeron C, Latu G, Morales J, Nardon E, Fil A, Nkonga B, Ratnani A, and Grandgirard V., Phys. Rev. Lett. 113, 115001 (2014)

- Liu F., Huijsmans G.T.A., Loarte A., Garofalo A.M., Solomon W.M., Snyder P.B., Hoelzl M., Zeng L., Nuclear Fusion 55, 113002 (2015)

- Fil A, Nardon E, Hoelzl M, Huijsmans GTA, Orain F, Bécoulet M, Beyer P, Dif-Pradalier G, Guirlet R, Koslowski HR, Lehnen M, Morales J, Pamela S, Passeron C, Reux C, Saint-Laurent F and JET contributors, Phys. Plasmas 22, 062509 (2015)

- Orain F, Bécoulet M, Dif-Pradalier G, Huijsmans G, Pamela S, Nardon E, Passeron C, Latu G, Grandgirard V, Fil A, Ratnani A, Chapman I, Kirk A, Thornton A, Hoelzl M, Cahyna P., Phys. Plasmas 20, 102510 (2013)

- Futatani S, Huijsmans G, Loarte A, Baylor LR, Commaux N, Jernigan TC, Fenstermacher ME, Lasnier C, Osborne TH, and Pegourié B., Nucl. Fusion 54 073008 (2014)

Acknowledgements:

- This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- The opinions expressed in this presentation do not necessarily state or reflect those of ITER Organisation.

- This work was carried out using the HELIOS supercomputer system at Computational Simulation Centre of International Fusion Energy Research Centre (IFERC-CSC), Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA.

