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1 Introduction 

The good energy confinement performance in the H-mode makes it the preferred operation in 

tokamak devices and ITER. However, edge localized modes (ELMs) driven by large pressure 

gradients in the H-mode edge pedestal produce high transient power and particle loads to the 

plasma facing components (PFCs), which can lead to increased erosion of the divertor in 

ITER. In recent years the quiescent H-mode (QH-mode) regime, originally developed at the 

DIII-D tokamak [1] and investigated in other current devices, has been found to provide high 

confinement without transient energy fluxes to PFCs associated with ELMs. In DIII-D, this 

operational regime has been extended to conditions suitable for ITER operation such as low 

torque input [2] and high normalized density operation [3]. In the QH-mode, the edge 

harmonic oscillation (EHO) is found to provide a continuous edge particle transport which 

replaces the periodic expulsion of particles and energy by ELMs. The EHO is thought to be a 

saturated kink-peeling mode driven unstable by edge current and rotation, which maintains 

the edge pressure gradient near but below the ELM instability boundary [4]. Understanding 

the nonlinear MHD physics mechanisms that lead to the growth of the kink-peeling mode and 

its saturation including the role of plasma rotation in these processes is essential to project the 

QH-mode as an alternative ELM-free regime for ITER high Q operation. For this purpose, 

the JOREK code [5] is applied to study the physics of the nonlinear MHD instabilities of QH-

mode plasma in DIII-D.  

The JOREK code is a non-linear MHD code, developed with the aim of studying the non-

linear evolution of the MHD instabilities such as ELMs, tearing modes, kink-peeling and 

ballooning modes, in full toroidal X-point geometry including the separatrix, open and closed 

field lines. In this work, nonlinear MHD simulations of DIII-D QH-mode plasmas have been 

carried out for the first time, both for ideal wall and resistive wall boundary conditions for 

low toroidal number modes. The influence of toroidal rotation as well as the effect of the 

vacuum vessel wall on the destabilization and saturation of edge modes for DIII-D QH-mode 

plasma has been studied.  

Two representative DIII-D QH-mode discharges #145117, Ip =1.1MA, Bt =1.9T, counter 

beam neutral injection at first and switched to co-injection later, with 3-D non-axisymmetric 

(NA) fields perturbation, and #153440 Ip =1.4MA, Bt =1.9T, with strong counter neutral beam 

injection throughout and without NA fields have been used as an initial state for the MHD 

simulations.  

2 Nonlinear simulation with JOREK for DIII-D QH plasmas 

Nonlinear MHD simulations of DIII-D shot #145117 performed with the JOREK code 

assuming ideal wall boundary conditions have been carried out. The influence of 3-D NA 
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fields applied in this discharge is not modelled in this first study. The initial 2-D static 

equilibrium is obtained from a kinetic EFIT fit. Figure 1a shows the time evolution of the 

magnetic energy perturbation for the toroidal harmonics n=1-5 included in the simulation. 

The initial state, characterised by a large edge current density, is unstable to n=1-5 kink-

peeling modes with the largest linear growth rate for n=5. In the non-linear phase, the 

amplitude of the perturbation saturates into a 3-D stationary state. The dominant mode 

number changes from n=5 in the linear phase down to an n=1 perturbation in the stationary 

state. The fast growth of the n=1 harmonic is due to the non-linear coupling between the n=3-

5 harmonics. This leads to a non-linear growth rate about 10x the linear n=1 growth rate. 

       
Figure 1 (a) Evolution of the perturbed magnetic energy (n=1-5) as a function of time (b) Contour 

plot of poloidal flux perturbation of the saturated n=1-5 kink/peeling modes from MHD simulations. 

A contour plot (Figure 1b) of the perturbation of the poloidal flux of the saturated state 

(including toroidal mode numbers n=1-5) shows the typical mode structure of a non-linearly 

saturated kink-peeling mode localised around the separatrix. In this case, without 

diamagnetic, neoclassical nor toroidal rotation, the dominant n=1 perturbation with a 

frequency of  ~1.6 kHz rotating in the counter clockwise poloidal direction due to the ExB 

velocity, causes a 1.3 cm oscillation of the density profile in the outer mid-plane, just inside 

the separatrix. Figure 2a compares the density profiles at two toroidal phases (φ = 0, π). 

.      
Figure 2 (a) density profiles for initial time (black curve), saturated n=0 mode (blue curve) and 

saturated mode n=1(red curve). (b) the time evolution of the density in the outer mid-plane at 

ψN=0.95 (normalized to the central density). 

The diffusive transport coefficients in the density and energy equations in the MHD 

simulations are chosen such as to keep the original pedestal profiles constant over time, see 

Fig 2a (in absence of any MHD perturbation, see n=0 curve in Fig.2a). The saturated kink-

peeling mode causes an additional density loss due to the ExB convection pattern of the 
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mode. The density at the top of the pedestal drops by about 25% while the pedestal gradient 

maintains the same steepness. The temperature profile does not change significantly. 

The time evolution of the density in the outer mid-plane (see Figure 2b) shows a non-

sinusoidal behavior. This indicates that the 3-D stationary state is composed of multiple 

toroidal harmonics leading to some degree of toroidal localization, consistent with typical 

observations of multi-harmonic spectra in QH mode plasmas [2,6,7]. The density losses due 

to the ExB flows of the saturated kink-peeling mode may explain the clamping of the density 

rise in QH modes as compared to Type-I ELMy H-modes. 

The simulation of discharge #153440, starting from a static equilibrium shows a different 

non-linear behavior. Instead of a 3-D stationary state, the system develops regular bursts of 

kink-peeling mode activity. Figure 3 compares the time evolution of the magnetic energy of 

the two cases. One clear difference is the mode rotation. In the 3-D stationary state the MHD 

instability is continuously rotating with a frequency of 1.6 kHz whereas in the bursting case 

the mode has zero rotation. Further analyses will be carried out in order to clarify the reasons 

for this different behavior.  

     
3 Parallel equilibrium rotation  

Recent investigations [2,6] indicate that the EHO is possibly driven by edge rotation and 

rotation shear destabilizing kink-peeling modes. In order to understand the effect of edge 

rotation in QH mode, we include toroidal rotation (here approximated as parallel rotation) in 

the nonlinear simulations by utilizing a profile for the toroidal rotation similar to the one 

measured experimentally. The toroidal rotation at the top of the pedestal in the simulations is 

20 km/s for #145117. The time evolution of the magnetic energy for the modes n=1-5 with 

parallel rotation is shown in Figure 4 for #145117. The parallel rotation profile (with a strong 

rotation shear at the pedestal) at this amplitude does not significantly change the linear 

growth rates or the non-linear evolution (compare with Fig.1a). The saturation levels are 

comparable with and without toroidal rotation, although the case with rotation exhibits a 

more irregular time behaviour. The density (and pressure) at the top of the pedestal is reduced 

by 25% in both cases and the EHO frequency obtained is also similar for both cases. 

  

 

Figure 3 Comparison of the evolution of the 

magnetic energy perturbation (n=1) of a 3-D 

stationary state and a case with a bursting 

behavior of the kink-peeling mode with/without 

parallel rotation for the latter. 

Figure 4 Magnetic energy time evolution 

(n=1-5) for #145117 with parallel 

equilibrium rotation. 
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4 Resistive wall 

The influence of a realistic resistive DIII-D wall has been studied with the coupled codes 

JOREK and STARWALL [8]. The STARWALL code calculates the response from the 

vacuum and the evolution of the induced currents in the resistive wall. This response is used 

as a boundary condition on the poloidal flux evolution in JOREK. 

Figure 5 shows the flux perturbation and the current potential in the resistive wall during the 

saturated state for #153440 with a parallel rotation at the pedestal top of 80km/s as measured 

experimentally. Initially the mode is rotating but in the saturated phase the mode is locked to 

the wall. A scan of the pedestal parallel rotation speed shows a small increase in the linear 

growth rate by 20% between 0 km/s and 80km/s. The saturation amplitude does not change 

significantly with the parallel rotation speed (except the 0 km/s case which, surprisingly, has 

a much smaller saturation level), indicating that rotation influences the non-linear mode 

evolution when a resistive wall is included. The saturation of the peeling-kink mode does not 

require a finite rotation but is likely due to the formation of islands and an ergodic layer in the 

pedestal. 

 

5 Conclusions 

MHD nonlinear simulations using two DIII-D QH-mode discharges as the initial state have 

been performed with the JOREK code. The linearly unstable kink-peeling modes non-linearly 

saturate into a new 3-D stationary state. The oscillations show the typical multi-harmonic 

content associated with the EHO in QH-mode plasmas. The effect of parallel rotation and of 

its shear at the plasma edge for both QH-mode discharges appears to be small, however self-

consistent simulations including neoclassical poloidal velocities and diamagnetic effects 

should be included in order to properly calculate the radial electric field and fully clarify this 

point. Further analyses will be done in this direction including resistive wall conditions as 

well. The possibility of QH-mode operation for ITER will be also analysed on the basis of the 

validation of the QH-mode physics picture with JOREK for DIII-D in the future. 
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Figure 5a The perturbed flux and wall potential on the resistive wall of a saturated kink peeling mode 

(#153440, v||=80km/s) (b) The (n=1) magnetic energy for a scan of the assumed parallel rotation 

speed at the top of the pedestal. 
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