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Introduction

Plasma instabilities like vertical displacement events, disruptions, external kink
modes, or edge localized modes induce mirror currents in conducting structures
which act back onto the instabilities and may significantly influence their linear and
non-linear dynamics. We describe the present status of a resistive wall extension
for the non-linear MHD code JOREK [1, 4].

STARWALL

STARWALL solves the vacuum magnetic field equation outside the JOREK
computational domain in presence of a three-dimensional conducting wall with
holes as a Neumann-like problem. Currents are assumed constant within each
wall triangle such that they can be expressed by potentials Yk at the triangle
corners [6]. The magnetic field tangential to the inteface is given by

Btan =
∑
i

bi

∑
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M̂ ee
i,j · Ψj +
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 (1)

and wall currents evolve in time according to

Ẏk = −ηw

dw
M̂ yy

k,k Yk −
∑
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M̂ ye
k,j Ψ̇j. (2)

Some information about STARWALL can be found in Refs. [6, 7]. An article
describing more details is in preparation by code author Peter Merkel.

Time-Discretization

Equation (1) is evaluated at timestep n+ 1 and discretizations Ψn+1 = Ψn + δΨn and
Y n+1 = Y n + δY n are used. Thus, the tangential field is given by
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 . (3)

The wall-current evolution (Eq. (2)) is discretized in time according to the
time-evolution scheme described in Ref. [3] which is also used for the other
JOREK equations. After solving for δY n

k , one gets
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where some of the “derived response matrices”
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have been used. Plugging Eq. (4) into Eq. (3), we get
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(6)

Coupling via Natural Boundary Condition

The current definition j = ∆∗Ψ ≡ R2 ∇ · (R−2 ∇Ψ) can be written in weak form as∫
dV

j∗l
R2

j −
∫
dV j∗l ∇ ·

(
1

R2
∇Ψ

)
= 0, (7)

where the second term may be integrated by parts yielding∫
dV

j∗l
R2

j +

∫
dV

1

R2
∇j∗l · ∇Ψ−

∮
dA

j∗l
R

(∇Ψ · n̂/R)︸ ︷︷ ︸
≡Btan

= 0. (8)

Inserting Eq. (6) into the boundary integral and separating implicit and explicit
terms yields the form implemented in JOREK,∑
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k + Ĝi,k δY

n−1
k

)
+
∑
j

(
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Wall-currents are updated after each time-step according to Eq. (4) to guarantee
consistency with the implicit time-stepping of JOREK. For the n = 0 component,
poloidal field coils need to be taken into account additionally, which leads to two
additional terms in Eq. (9). A similar boundary integral occurs in the
Grad-Shafranov equation for the plasma equilibrium.

First Benchmarks and Results
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Figure : For an ITER-like limiter case, the freeboundary equilibrium determined by JOREK+STARWALL
is compared to the results from the CEDRES++ code [2]. Very good agreement is observed with the
small remaining differences caused by different coil discretizations.
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Figure : For a 2/1 tearing mode in a circular plasma surrounded by an ideally conducting wall, the linear
growth rates obtained from the JOREK+STARWALL simulations are compared to results from the linear
CASTOR code [5].
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Figure : For a resistive wall mode in a circular plasma surrounded by a resistive wall, the linear growth
rates are plotted as a function of the wall radius. Also, energy time-traces during non-linear saturation
are shown. A comparison to analytical theory is in preparation.

Summary and Outlook

The ongoing implementation and verification of a resistive wall model in the
non-linear MHD-code JOREK was summarized. Benchmarks for a freeboundary
equilibrium and tearing mode cases show good agreement. Simulations of the
linear and non-linear phase of RWMs were presented (comparison to analytical
theory and linear codes ongoing).
Benchmarking will be continued and extended to non-linear comparisons.
Realistic X-point geometries will be considered requiring a special treatment of
grid corners. After completion, the code can be applied to a variety of MHD
instabilities interacting with conducting structures like resistive wall modes, edge
localized modes, vertical displacement events or disruptions.
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