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Heat Conduction

Perpendicular Transport
• Limited mobility perpendicular to magnetic field lines
• Dominated by gradient-driven turbulence

⇒ χ⊥ = O
(
1 m2/s

)
Parallel Transport

• High mobility along field lines
• Spitzer Härm-conductivity: Random walk-process of electrons with

step width = mean free path
• But: Mean free path O( km )!
• “Heat-Flux-Limit”: Limit to free streaming electrons

⇒ χ|| = ?
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Transport across magnetic islands
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[R. Fitzpatrick Phys. Plasmas 2 825 (1995)]

• Competition between parallel and perpendicular transport

• Scale island width wc ∝
(
χ||/χ⊥

)−1/4 ◦

• Flattening of temperature profile depends on w/wc only
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Neoclassical Tearing Modes

Consequences of temperature perturbation
• Resonant perturbation of Bootstrap current (jbs ∝ ∇p)
• Effective lack current causes further island growth

⇒ Neoclassical Tearing Mode (NTM)
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Evolution of (Neoclassical) Tearing Modes
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Evolution of (Neoclassical) Tearing Modes
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Evolution of (Neoclassical) Tearing Modes
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Rutherford Equation

Open questions
• Is Fitzpatrick’s expression for ∆ ′bs correct?

∆ ′bs =
C

w

(
w2

w2 + (1.8wc)2

)
• How large is the heat diffusion anisotropy in experiments (determines wc)?

Approach
• Compute diffusive heat transport numerically
• Compare to predictions and measurements
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Anisotropic heat conduction

Heat conduction equation

3
2
ne
∂Te

∂t
+∇· qe = Pe

qe = −ne
[
χ||∇||Te + χ⊥∇⊥Te

]

ne electron density

Te electron temperature

qe heat flux density

Pe heat source

χ|| parallel- and

χ⊥ perpendicular heat diffusivity

χ||/χ⊥ heat diffusion anisotropy

Numerical method
• Problem: Numerical diffusion
• Possibility: Align coordinates to field lines

Hard to do with dynamic equilibria or ergodization
• Other approach: Symmetric finite differences with staggered grids

[S. Günter et.al. J. Comput. Phys. 209 354 (2005)]

⇒ No exact alignment of coordinates required
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Helical coordinate system

• Flux and Straight field line coordinates
• Transformation of poloidal coordinate

⇒ Unsheared helical coordinate system
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Temperature flattening

w: island width

wc ∝ (χ||/χ⊥)−1/4:

scale island width

w/wc=2.1                                     w/wc=4.2                                     w/wc=8.4

[M. Hölzl et.al. Phys. Plasmas 15 072514 (2008)]

• 3/2-island in ASDEX Upgrade
• Flattening for w/wc & 2
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Neoclassical island drive
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NTM stability
• Destabilization by temperature flattening underestimated by Fitzpatrick

(limiting cases agree very well) ◦

∆ ′bs =
C

w

(
w2

w2 +w2
d

)

(
1 +

2.2
(w/wd)2 + 3wd/w

)

wd = 1.8wc

Matthias Hölzl Modeling of Diffusive Heat Transport across Magnetic Islands and Stochastic Layers



Neoclassical island drive

1 10
w/wc

0

0.2

0.4

0.6

0.8

1

1.2

∆’
b

s [
n

o
rm

al
iz

ed
]

3/2, w=0.036a
3/2, w=0.072a
3/2, w=0.143a
4/3, w=0.061a
Fitzpatrick
corrected

[M. Hölzl et.al. Phys. Plasmas 14 052514 (2007)]

NTM stability
• Destabilization by temperature flattening underestimated by Fitzpatrick

(limiting cases agree very well) ◦

∆ ′bs =
C

w

(
w2

w2 +w2
d

)(
1 +

2.2
(w/wd)2 + 3wd/w

)
wd = 1.8wc

Matthias Hölzl Modeling of Diffusive Heat Transport across Magnetic Islands and Stochastic Layers



Outline

1 Motivation and Introduction

2 Numerical Model

3 Magnetic Islands

4 Ergodic Layers

5 Comparison to Experiment

6 Conclusions and Outlook

Matthias Hölzl Modeling of Diffusive Heat Transport across Magnetic Islands and Stochastic Layers



Temperature flattening

[M. Hölzl et.al. Phys. Plasmas 15

072514 (2008)]

χ=7∙107 χ=1∙109

• Small to moderate anisotropies: Island effects dominate
• High anisotropies: Flattening of whole ergodic layer
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Island and ergodic effects
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NTMs in the frequently interrupted regime (FIR-NTMs)
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[A. Gude et.al. Nucl. Fusion 39 127 (1999)]

[S. Günter et.al. Nucl. Fusion 43 161 (2003)]
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[M. Hölzl et.al. Phys. Plasmas 15 072514 (2008)]

• High plasma pressure: Frequent amplitude drop

⇒ Reduced average amplitude
• Correlated with other mode activity
• Possible explanation: Ergodization
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Ergodic plasma boundary

ASDEX Upgrade
• Ergodization of the plasma

boundary by auxiliary coils
• Aim: Suppression of ELMs

[M. Hölzl et.al. Phys. Plasmas 15 072514 (2008)]

Matthias Hölzl Modeling of Diffusive Heat Transport across Magnetic Islands and Stochastic Layers



Ergodic plasma boundary

ASDEX Upgrade
• Ergodization of the plasma

boundary by auxiliary coils
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Comparison to Experiment

Approach
• Consider electron temperature at magnetic island
• Simulations with several island widths, w, and heat diff. anisotropies, χ||/χ⊥
• Select simulation that reproduces measurements best (minimize quadratic

differences)

⇒ Determine w and χ||/χ⊥ independently for each transit
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Comparison to Experiment

ECE-Imaging
• Electron cyclotron emission spectroscopy

with several lines of sight
• Noise reduction by singular value

decomposition ◦

• Select one line of sight:
• Radial coverage
• Channel quality
• Channel positions

• Radial information: Several channels
• Toroidal information: Time-traces
• Calibration against 1D ECE
• Fine-calibration to ensure that T is approximately flat inside large island
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Comparison with 2/1 island in TEXTOR

[M. Hölzl et.al. Nucl. Fusion 49 115009 (2009)]
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• Produced by DED-coils; comparison while island grows ◦
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• Produced by DED-coils; comparison while island grows ◦
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Comparison with 2/1 NTM in ASDEX Upgrade
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Overview
• Discharge #25174, t = 2.037 s . . . 2.142 s
• 2/1 NTM (≈ 5 kHz, 540 transitions)
• ECE-Imaging (100 kHz sampling frequency)
• Noise suppression: SVD + average of 10 transitions ◦
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Summary: Comparison with Experiments
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TEXTOR: 2/1 RMP-island Te = 0.6keV ne = 1.6 · 1019m−3 χSH = 109.8±0.2 χ = 108.0±0.4

AUG: 2/1 NTM Te = 1.1keV ne = 4.0 · 1019m−3 χSH = 1010.1±0.3 χ = 108.0±0.4

⇒ “Measurement” of heat diffusion anisotropy

⇒ Clear indication for heat-flux limit, more data needed!
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Conclusions and Outlook

Summary
• Heat transport across magnetic islands and stochastic layers
• ∆ ′bs larger than analytically predicted
• Island effects at stochastic layers
• FIR-NTM: Reduction of ∆ ′bs by ergodization
• Transport across ergodic plasma boundary
• Determination of χ||/χ⊥ by comparison to experiments

Outlook
• Work with and improve nonlinear MHD code JOREK

• But also continue the presented work. . .
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Additional comparisons with experiments

Aims
• NTM with power ramp-down
⇒ Verify heat flux limit theories
⇒ Determine marginal w/wc

• NTM with ECRH
⇒ Investigate χ⊥ inside island

Requirements
Te(r): 1D and 2D ECE

ne(r): IDA

Ti(r), vtor(r): CXRS ⇒ Pe(r): TRANSP

Separate discharge with 0.5% Bt-ramp in quiescent phase for calibration
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Scale island width, wc

wc =

(
χ||

χ⊥

)−1/4 ( 8R0qs

n (∂q/∂r)s

)1/2

qs Resonant value of the safety factor

R0 Major radius

n Toroidal mode number
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Spitzer Härm diffusivity

χSH|| = 3.16 · vth,e · λmfp,e ≈ 3.6 · 1029 m2/s · T
5/2
e [keV ]

ne[m−3 ]
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Temperature distribution at O- and X-Points
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Singular Value Decomposition
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AUG: Period length of 2/1 NTM
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trigger was spline-interpolated from 100 to 500 kHz
=> clear improvement
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Sensitivity
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Sensitivity
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Sensitivity
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Sensitivity

0 π 2π
φ

1.0

1.2

1.4

T
 [

ke
V

]
w = 9 cm

Matthias Hölzl Modeling of Diffusive Heat Transport across Magnetic Islands and Stochastic Layers



Sensitivity
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Sensitivity
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Sensitivity
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Strong ergodization
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Fluid Regime
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Rechester-Rosenbluth Regime
Inseleffekte

[M. Hölzl et.al. Phys. Plasmas 14 052514 (2007)]

Highly ergodic configuration
• Artificial case: Five helical perturbations, cylindrical geometry
• Allows for comparison to analytical theories
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