Matthias Hölzl, Sibylle Günter, and the ASDEX Upgrade Team

Ringberg Theory Workshop Max-Planck-Institut für Plasmaphysik

17.11.2008

Outline

- Heat Diffusion Equation
- Coordinate system
- Coordinate alignment
- 3 Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR
- Ergodic Layers
 - Temperature flattening
 - FIR-NTMs
- 5 Edge Ergodization

Motivation

Safety Factor

• "Safety factor" q: Number of toroidal turns per poloidal turn • $\iota = 1/q$

M. Hölzl, S. Günter

Ringberg Theory

Motivation

Poincaré plot

• Poincaré plot: Field lines traced for many toroidal turns

M. Hölzl, S. Günter

Ringberg Theory

Heat Diffusion in realistic Tokamak Geometry

Motivation

Magnetic island

• 2/1 magnetic island at q = 2 surface

M. Hölzl, S. Günter

Ringberg Theory

Heat Diffusion in realistic Tokamak Geometry

Motivation

Temperature flattening

- Temperature profile flattens inside the magnetic island
- Bootstrap current $\propto \nabla p$ perturbed \Rightarrow Island drive (NTM)

M. Hölzl, S. Günter

Ringberg Theory

Model

- Heat Diffusion Equation
- Coordinate system
- Coordinate alignment
- 3 Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR
- 4 Ergodic Layers
 - Temperature flatteningFIR-NTMs
- 5 Edge Ergodization
- 6 Summary

Model

Heat Diffusion Equation

Steady State Heat Diffusion Equation

$$abla \cdot \mathbf{q} = P,$$
 where $\mathbf{q} = -n_e \left(\chi_{||}
abla_{||} T + \chi_{\perp}
abla_{\perp} T
ight)$

q: heat flux, P: energy source, n_e : electron density, $\chi_{||}$ and χ_{\perp} : heat diffusivities

Anisotropy

$$\chi \equiv \chi_{||}/\chi_{\perp} \approx 10^8 \dots 10^{10}$$

Finite Difference Scheme

see Günter et al. (2005)

- Two staggered grids
- Low numerical diffusion
- Coordinate alignment not required
- Realistic anisotropies

Coordinate system

Curvilinear Coordinate System

• Heat diffusion eq. in tensor notation:

$$\frac{1}{\sqrt{g}} \frac{\partial}{\partial u^{\alpha}} (\sqrt{g} q^{\alpha}) = P$$
$$q^{\alpha} = -n_e \chi_{\perp} \left[\chi b^{\alpha} b^{\beta} + g^{\alpha \beta} \right] \frac{\partial T}{\partial u^{\beta}}$$

- q^{α} : Contravariant heat flux components
- u^{α} : Contravariant coordinates (ρ , θ , ϕ)
- $g^{lphaeta}$: Metric tensor components
- $g = det[g_{\alpha\beta}]$: Determinant of the covariant metric tensor

• Axisymmetric straight field line coordinates

Heat Diffusion in realistic Tokamak Geometry
Model
Coordinate alignment

Coordinate Alignment to Unperturbed Magnetic Field

- Coordinate Transformation $heta = ilde{ heta} \iota \cdot \phi$
 - \Rightarrow Sheared helical coordinates

 $\iota = 1/q$: Inverse safety factor

- Problems:
 - Grid deformation
 - Interpolation for toroidal periodicity condition $T_{\phi=0} \equiv T_{\phi=2\pi}$ increases numerical diffusion
 - Restriction $\chi_{||}/chi_{\perp} \lesssim 10^7$ X

Model

Coordinate alignment

Partial Coordinate Alignment

- Transformation $\theta = \tilde{\theta} \iota_c \cdot \phi$ $\iota_c \equiv const$
 - \Rightarrow Unsheared helical coordinates
- Realistic anisotropies

Restrictions due to the Misalignment?

• Islands resolved well for: $N_{\phi} \gtrsim \Delta \iota \cdot N_{ heta}$

 $\Delta \iota = |\iota - \iota_c|$: misalignment at island

 N_{ϕ} , N_{θ} : toroidal and poloidal grid point numbers

- Suitable for magnetic perturbations with similar helicities
- Islands with very different helicities increase the numerical effort

- Heat Diffusion Equation
- Coordinate system
- Coordinate alignment
- 3 Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR
- 4 Ergodic Layers
 - Temperature flatteningFIR-NTMs
- 5 Edge Ergodization
- 6 Summary

Heat Transport across Magnetic Islands

see Fitzpatrick (1995); Yu (2006); Hölzl et al. (2007)

• Scale island width $w_c \propto (\chi_{||}/\chi_{\perp})^{-0.25}$

 $w/w_c \begin{cases} \ll 1 & \text{No perturbation} \\ \gtrsim 1 & \text{Temperature flattening} \end{cases}$

- Heat conduction layer at the separatrix
- Temperature flattening destabilizes NTMs (perturbation of the bootstrap current)
- This talk: Realistic tokamak geometry

Magnetic Islands

Temperature flattening

- ASDEX Upgrade equilibrium
- 3/2 island with w = 8.1 cm

 $\theta = 0$: Low field side $\theta = \pi$: High field side

Magnetic Islands

Temperature flattening

Comparison to TEXTOR (preliminary)

Comparison to TEXTOR (preliminary)

Data provided by Ivo Classen (see Classen (2007))

- 2/1 island triggered by DED coils
- Mode frequency 1 kHz
- ECE frequency 100 kHz
- Channels cover part of the island (including x-point)
- Channels not cross-calibrated
- Comparing during growth phase
- Aim: Draw conclusions for experimental $\chi_{||}/\chi_{\perp}$

TEXTOR: Tokamak experiment in Jülich with a circular plasma cross section

DED coils: Set of perturbation coils at TEXTOR (Dynamic ergodic divertor)

ECE: Diagnostic measuring the electron temperature (Electron cyclotron emission spectroscopy)

Magnetic Islands

Comparison to TEXTOR (preliminary)

Heat Diffusion in realistic Tokamak Geometry Magnetic Islands

Comparison to TEXTOR (preliminary)

Numerical simulation

- Code runs with different $\chi_{||}/\chi_{\perp}$, power source, energy source, . . .
- Toroidal temperature cuts:

Automatic matching

- Adding calibration-summands to the ECE channel signals
- Best-fitting numerical code run for each experimental timepoint

Problems

- Sudden change of the island structure as the mode locks to the DED perturbation field
- Best fitting $\chi_{||}/\chi_{\perp}$ changes strongly

Reasons?

- Perturbation profile?
- Higher harmonics (4/2, ...)?
- Different modes excited by DED coils (3/1, ...)?

Additional Comparisons planned

- ECRH heating at magnetic island
- ASDEX Upgrade with new ECE diagnostic

- Heat Diffusion Equation
- Coordinate system
- Coordinate alignment
- 3 Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR
- 4 Ergodic Layers
 - Temperature flatteningFIR-NTMs
- 5 Edge Ergodization
- 6 Summary

Heat Diffusion in realistic Tokamak Geometry Ergodic Layers Background

Heat Diffusion across an Ergodic Layer

- Overlapping magnetic islands produce an ergodic layer
- Chaotic field line trajectories

 $\chi_{||}/\chi_{\perp} = egin{cases} {
m small: single island effects dominate} \ {
m large: ergodisation increases transport} \end{cases}$

Ergodic Layers

Temperature flattening

- Overlapping 3/2 and 4/3 islands
- Chirikov parameter $\sigma_{Ch} = 1.52$

 $\theta = 0$: Low field side $\theta = \pi$: High field side

Ergodic Layers

Temperature flattening

- Overlapping 3/2 and 4/3 islands
- Chirikov parameter $\sigma_{Ch} = 1.52$

 $\theta = 0$: Low field side $\theta = \pi$: High field side

FIR-NTMs

FIR-NTM: Neoclassical tearing mode in the frequently interrupted regime

```
see Günter et al. (2001) and Gude et al. (2002)
```

- Frequent interruption of NTM growth by sudden amplitude drop
- Much faster than the resistive timescale
- Observed at large normalized plasma pressure β_N (i.e. large bootstrap current fraction)

Heat Diffusion in realistic Tokamak Geometry Ergodic Layers EIB-NTMs

FIR-NTMs

- Island \Rightarrow T flattening \Rightarrow bootstrap current perturbation \Rightarrow NTM
- Considering 3/2 NTM and additional 4/3 perturbation
- Resonant bootstrap current perturbation strongly reduced for $\chi_{||}/\chi_{\perp}\gtrsim 1\cdot 10^9$ and $\sigma_{Ch}\gtrsim 1.4\Rightarrow$ Less island drive
- 4/3 perturbation expected to be ideal (timescale!)

- Heat Diffusion Equation
- Coordinate system
- Coordinate alignment
- 3 Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR
- 4 Ergodic Layers
 - Temperature flatteningFIR-NTMs
- Edge Ergodization

6 Summary

Edge ergodization

- Perturbation coils planned for ASDEX Upgrade
- Among others aimed at the mitigation of edge localized modes (ELMs)
- Ergodization of the plasma edge
- Increased heat conduction due to the transport of electrons along magnetic field lines

Edge Ergodization

- Spitzer conductivity assumed
- Significant drop of edge temperature gradient observed
- Very sensitive to plasma parameters!

Summary

- Unsheared helical coordinates
- Realistic $\chi_{||}/\chi_{\perp}$ possible (islands, ergodic layers, ergodic edge)
- Magnetic islands: Temperature flattening for $w/w_c \gtrsim 2$
- Comparison to TEXTOR
 - ECE timetraces vs. toroidal cuts
 - Automatic matching
 - Problems with perturbation profile
- Ergodic layers
 - Temperature flattening at the ergodic layer for large $\chi_{||}/\chi_{\perp}$
- NTM
 - Resonant bootstrap current perturbation drives island
 - FIR-NTM: Frequent amplitude drop
 - Possible explanation: Ergodization reduces island drive
- Edge: Ergodization might increase radial heat transport

Thanks for your attention!

Acknowledgements

Prof. Dr. Sibylle Günter · Dr. Qingquan Yu · Dr. Erika Strumberger · Klaus Reuter

References

Most of the results shown in this talk have been published in Hölzl et al. (2008).

- S. Günter, Q. Yu et al., J. Comput. Phys., 209 (2005), 354.
- R. Fitzpatrick, Phys. Plasmas, 2 (1995), 825.
- Q. Yu, Phys. Plamas, 13 (2006), 062310.
- M. Hölzl, S. Günter et al., Phys. Plasmas, 14 (2007), 052501.
- I. Classen, Imaging and Control of Magnetic Islands in Tokamaks, Ph.D. thesis, Technische Universiteit Eindhoven (2007).
- S. Günter, A. Gude et al. (2001).
- A. Gude, S. Günter et al. (2002).
- M. Hölzl, S. Günter et al., Phys. Plasmas, 15 (2008), 072514.