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Motivation
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• Finite element method (FEM) for Unstructured Mesh : a useful numerical tool

• Magnetic axis: no singularity although grids aligned on flux surface

• Complicated boundary: plasma wall, with separatrix

• Good description of localized wave packet (broad Fourier spectrum needed for narrow beam)

• For studies of Nonlinear interaction of Alfvénic and turbulent fluctuations (NAT) and meso-scale 

physics (MET) in burning plasmas: for resolving non-Fourier mode structures

• Useful for Wave Packet Calculation and mode structure symmetry breaking in addition 

to Mode Structure Decomposition (MSD) method and kinetic PIC simulation

• It can be useful for studies of micro-instability, energetic particle driven modes and radio frequency 

wave propagation & absorption [Lu POP’12, 13; Bao, Lin, Lu PPCF’14, Lu POP’17, Lu NF’18]

• Complement to available codes and methods

• Codes using FEM and Unstructured Mesh: M3D, M3D_C1, XGC, GTS (PPPL); GTC (UCI)

• European codes ORB5, LIGKA, HMGC, EUTERPE etc: based on structured grids

A peeling-ballooning 
eigenmode calculated using 
M3D-C 1 [Ferraro POP’10]

GTS grids for unstructured 
mesh [W. Wang POP’06]

https://scholar.google.com/citations?user=g0YePJUAAAAJ&hl=en
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Finite element method on unstructured mesh
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• Unstructured mesh

• Unstructured mesh: A tessellation of a part of the Euclidean 

plane or Euclidean space by simple shapes, such as triangles 

or tetrahedra, in an irregular pattern

• Finite element method for Unstructured mesh

• Equation to be solved: 𝐿(𝑹)𝑦(𝑹) = 𝑆(𝑹), where 𝐿 𝑹 : operator, 𝑆(𝑹): known, 𝑦(𝑹): to be 

solved

• Basis functions 𝑁𝑖 are defined in each local shape, e.g., triangle

• Solution 𝑦 is represented as the superposition of basis functions: 𝑦(𝑹) = σ𝑖 𝑦𝑖𝑁𝑖(𝑹)

• Coefficients 𝑦𝑖 obtained from weak form: ∫ 𝑑𝑆𝑁𝑗 𝐿(𝑹)σ𝑖 𝑦𝑖𝑁𝑖(𝑹) = 𝑆(𝑹)

Example of unstructured grid

https://en.wikipedia.org/wiki/Unstructured_grid


TRIMEG: TRiangular MEsh based Gyrokinetics
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• Purpose: test the finite element method for unstructured mesh

• Object oriented programing: capsulated equilibrium, field, particle classes

• Field class: eigenvalue solver, initial value solver…

• Particle class: particle pusher …



Delaunay triangulation
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• Delaunay triangulation

• Delaunay triangulation for a given set P of discrete points in a plane is a triangulation 

DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P)

A Delaunay triangulation in the 
plane with circumcircles shown

• Several examples (TRIMEG: vertex initialization, field solver, particle pusher, with 

external library for mesh generation)

TRIMEG results: for ASDEX Upgrade upper snow 
flake divertor (data from O. Pan, IPP; Lunt et al, 
Nuclear Materials and Energy 12 (2017): 1037)

Eigenmode calculated using 
TRIMEG for CFETR (data from Z. Li, 
PKU)

TRIMEG results: DTT (data 
from G. Vlad , M. Falessi, ENEA)

https://en.wikipedia.org/wiki/Delaunay_triangulation
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Solution of eigenvalue problem: different eigenstate

• Helmholtz equation: 
𝛻2𝛿𝜙𝜔𝑝

− 𝜔2𝛿𝜙𝜔𝑝
= 0

• 2D eigenmodes with 
Dirichlet BC

Mode structure symmetry property of different eigenstates for KBM studied in [Xie, Lu, Li POP 25(7) 072106 (2018)]

https://aip.scitation.org/doi/abs/10.1063/1.5025949


Eigenvalue approach: TAE
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• Toroidal Alfvén eigenmodes (TAE): 𝛻⊥ ⋅
𝜔2

𝑣𝐴
2 𝛻𝛿𝜓 + 𝐵𝜕∥

𝛻⊥
2

𝐵
𝜕∥𝛿𝜓 = 0

WPC-X: Wave Packet Calculation code 
(under TRIMEG framework)Comparison with HYMAGYC (X. Wang&ENEA), LIGKA (Ph. 

Lauber) in plasma core: in progress



Eigenvalue approach: ITG (fluid-like ions)
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• Ion temperature gradient (ITG)  mode

•
𝑅2

Ω2 𝜕∥
2 +

𝜏−1Ω+Ω∗𝑖

Ω−Ω∗𝑝𝑖
− 𝜌𝑇𝑖

2 𝛻⊥
2 +

𝑖𝜌𝑇𝑖𝒆𝒁⋅𝛻

Ω
𝛿𝜙 = 0

Comparison with LIGKA (Ph. Lauber) in plasma core: in progress

Denser grids adopted in maximum 
mode amplitude region
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Initial value approach: PIC simulation
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• Models

• Delta f method 
d𝛿𝑓

dt
= − ሶ𝒓 ⋅ 𝛻𝑓0 − ሶ𝑣∥

𝜕

𝜕𝑣∥
𝑓0

• Long wavelength approximation for ion polarization density

−𝛻⊥ ⋅
𝑞𝑖𝑛0

𝐵Ω𝑖
𝛻⊥𝛿𝜙 = 𝛿 ത𝑛𝑖-𝛿𝑛𝑒; adiabatic 𝛿𝑛𝑒 =

𝑒

𝑇𝑒
(𝛿𝜙 − 𝛿𝜙 𝜓)

• Particle-in-cell  in (𝑅, 𝑍) plane (unstructured mesh), Particle-in-Fourier (PIF) in 𝜙 direction

• Simplification for axisymmetric (n=0) problem (GAM/EGAM)

• Ad-hoc equilibrium (A. Bottino, ORB5)

• Linearized gyrokinetic equation; only lowest order for GAM problem [Z. X. Lu et al, PPCF submitted]

• Long wave length approximation for ion polarization

• No gyro average in particle equation of motion, i.e., 𝛿𝜙 𝐺𝑦𝑟𝑜 ≈ 𝛿𝜙 (small 𝑘𝑟𝜌𝑖 limit)



Coordinates, mesh and RK4 integrator
• Hybrid coordinates: equation of motion in 
(𝑅, 𝑍, 𝜙) [Chang, POP’04]; grids along flux surface

• Intermediate structured grid (𝑟, 𝜃) for charge 
deposition [W.X. Wang POP’06]

• Reflected particles (up-down symmetric) for 
touching-wall particles

• Particle motion: Runge-Kutta 4th order, coupled 
to Poisson solver

Particle trajectory

Particle coordinates increment k Field value 𝛿𝜙

𝛻⊥ ⋅ 𝐶𝛻⊥𝛿𝜙𝑛,1 = 𝛿𝑛(𝑦𝑛 + 𝑘1/2)

𝛻⊥ ⋅ 𝐶𝛻⊥𝛿𝜙𝑛,2 = 𝛿𝑛(𝑦𝑛 + 𝑘2/2)

𝛻⊥ ⋅ 𝐶𝛻⊥𝛿𝜙𝑛,3 = 𝛿𝑛(𝑘3)

http://dx.doi.org/10.1063/1.1707024
http://dx.doi.org/10.1063/1.1707024


Field solver with flux surface average: important for 
Zonal component calculation

• m=0

• m=1

• 𝛿𝜙 response to 
𝛿𝑛(𝑚 = 0) is much 
larger than that to 
𝛿𝑛(𝑚 ≠ 0)

Adiabatic electrons: 

𝛿𝑛𝑒 =
𝑒

𝑇𝑒
(𝛿𝜙 − 𝛿𝜙 𝜓

−𝜵⊥ ⋅
𝒒𝒊𝒏𝟎

𝑩𝜴𝒊
𝜵⊥𝜹𝝓 = 𝜹 ഥ𝒏𝒊-𝜹𝒏𝒆



Single species test: GAM residual level
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• Maxwellian species, low 𝑘𝑟𝜌𝑇𝑖 limit

• Residual level predicted by Rosenbluth-Hinton (R-H) results

q

Implementation directed by theoretical derivation: dominant terms kept [Z.X. Lu et al, NF’ 18]
Gyro average needs to be added for Finite Larmor radius and orbit width effects [Zonca EPL’08]



EGAM mode structure symmetry breaking

• 2D mode structure tilting angle 𝜃0 changes its sign for  𝑢∥ = 3𝑣𝑡ℎ (left) and for  𝑢∥ = −3𝑣𝑡ℎ (right) 

• EGAM mode structure symmetry breaking effects on particle/momentum/heat transport discussed 
theoretically [Z.X.Lu et al PPCF submitted]

• Tilting angle changes directions when injected EP direction changes

• Single bump-on-tail EP source: 𝑓𝐸𝑃 =
1

𝜋1.5𝑣𝑡
3 exp{−

𝑣−𝑢∥
2

𝑣𝑡
2 }

𝜃0
𝜃0
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Fluid electron model: fluid electron, gyrokinetic
energetic particle
• Field equation with EP contribution 

𝜕𝑡𝛿𝐴∥ = −𝑏 ⋅ 𝛻∥𝛿𝜙 (1)

𝜕𝑡 𝛻
𝑚𝑖𝑛0

𝐵2
⋅ 𝛻⊥𝛿𝜙 + 𝐵𝜕∥

1

𝐵𝜇0
𝛻⊥
2𝛿𝐴∥ = 𝛻⊥ ⋅ 𝛿𝐽⊥,𝐸𝑃 (2)

• 𝛿𝐽⊥,𝐸𝑃 : calculated from the evolving EP information

𝜕𝑡𝛿𝑓 = −𝑓0𝜅 Υ ሶΥ +
𝜕𝑓0

𝜕𝜖
ሶ𝜖 (3)

• Similar to the ``minimum’’ e-fluid model in ORB5 [Mishchenko, Bottino et al]



Field integrator: verification using Helmholtz equation

• Model equation for testing implicit scheme: 

𝜕𝑡
2𝛿𝜙 + 𝛻2𝛿𝜙 = 0 (1)

• Explicit V.S. implicit scheme
• Discretization for 𝜕𝑡𝛿𝜙 = 𝐿(𝑹)𝛿𝜙
𝐿: a linear operator, represented as mass and stiffness matrices in unstructured mesh 

• Explicit (Euler method): 
𝛿𝜙𝑖

𝑡+Δ𝑡−𝛿𝜙𝑖
𝑡

Δ𝑡
= 𝐿𝛿𝜙𝑖

𝑡

• Implicit: 
𝛿𝜙𝑖

𝑡+Δ𝑡−𝛿𝜙𝑖
𝑡

Δt
=

𝐿𝛿𝜙𝑖
𝑡+Δ𝑡+𝐿𝛿𝜙𝑖

𝑡

2

• Accuracy test: comparing with eigenvalue solution 

𝛻2𝛿𝜙𝜔𝑝
− 𝜔2𝛿𝜙𝜔𝑝

= 0

• Solution of Eq.  (1): 𝛿𝜙 = σ𝑝 𝛿𝜙𝜔𝑝
𝑒−𝑖𝜔𝑝𝑡

• Eigenvalue and initial value problem connected with each other closely
[Vlad, G., F. Zonca, and S. Briguglio. La Rivista del Nuovo Cimento (1978-1999) 22.7 (1999): 1]



Explicit v.s. implicit schemes
• Comparison

dt t end

Explicit 0.005 4

Implicit 0.05 40

Numerical instability after t=5 (explicit)
Red dots: theoretical results; 
blue line: initial value approach

Explicit 

Implicit



Time evolution of multiple eigenmodes
• Superposition of a band of eigenmode

iroot=5,6,7,8

Two eigenmodes as initial value Four eigenmodes as initial value

• The implicit time scheme produces accurate time evolution



Results of TAE evolution w/o EPs
• For zero EP density: 𝜕𝑡

2𝛻⊥ ⋅
1

𝑣𝐴
2 𝛻𝛿𝜓 = 𝐵𝜕∥

𝛻⊥
2

𝐵
𝜕∥𝛿𝜓, i.e., 𝛻 ⋅ 𝛿𝑗 = 0

• It corresponds to the eigenvalue problem 𝛻⊥ ⋅
𝜔2

𝑣𝐴
2 𝛻𝛿𝜓 + 𝐵𝜕∥

𝛻⊥
2

𝐵
𝜕∥𝛿𝜓 = 0

• 2D mode structure and time evolution (explicit scheme)



Preliminary results of TAE calculation for AUG plasma

• Strongly non-linear energetic particle dynamics in ASDEX Upgrade with core 

impurity accumulation has been studied [Lauber et al, 27th IAEA FEC, 2018] 

• Simulation using ORB5 is important for identifying the 
nonlinear physics

• Simulation using AUG discharge 034924.036 is in progress, 
following the DIII-D benchmark case [Taimourzadeh et al, 
submitted to NF]

• TAE studies using finite element method for unstructured 
mesh is in progress

• TAE eigenvalue and 2D mode structure obtained using AUG 
discharge 034924.03600

• Simulation using initial value approach with EP effect in progress

𝑻𝒆𝒊𝒈𝒆𝒏 = 𝟖𝟏. 𝟏

http://phoenix.ps.uci.edu/zlin/bib/taimourzadeh19.pdf


Outline
• Motivation

• Finite element method on unstructured mesh
• Basic concept
• Examples of unstructured mesh 

• Eigenvalue approach: TAE and ITG
• Toroidicity induced Alfén eigenmode
• Ion temperature gradient mode

• Initial value approach: PIC simulation
• Model and numeric method
• Applications to zonal flow residual and symmetry breaking studies

• Fluid electron model for EP driven Alfvén modes and application to AUG
• Fluid electron model
• Application to AUG

• Summary

25



Summary
• Aim: a numerical tool for wave packet calculation, mode structure 

symmetry breaking studies and energetic particle physics

• Finite element method for unstructured mesh implemented

• Field class and particle class tested in Eigenvalue and initial value 
problems

• Physics problems tested
• ITG/TAE eigenvalue problem
• Particle-in-cell simulation: GAM residual level and symmetry breaking
• Toroidicity induced Alfven eigenmode for ad-hoc equilibrium and for AUG



Outlook
• Numerical improvement

• For better efficiency, sparse matrix solver in Fortran (WSMP/PETSC/PARDISO) is 
needed (PETSC serial solver implemented)

• C0 high order basis or C1 basis needed for higher differential operators
• Realistic tokamak geometry and plasma profiles

• Physics targets
• Wave packet calculation (propagation & absorption)
• Mode structure symmetry breaking and momentum transport with EP effects
• Analyses of experimental data for EGAM, AEs (NAT project)
• Edge physics (contribution to ORB5&EUTERPE…)?

• Your suggestions are appreciated



Backup
• A brief introduction to TRIMEG

• Delaunay triangulation examples

• Multiple species simulation: preliminary results

• Petsc solver (for 2D structured mesh test, finite difference)

• Boundary condition



A brief introduction to TRIMEG
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• TRIMEG: TRIangular MEsh based Gyrokinetics

• Object Oriented Programming: capsulation considered for equilibrium, field and 

particle classes; inheritance and polymorphism: less demanding in the present stage

• Aim: a computational tool with physics targets

Numerical features Present status

1 Unstructured mesh Mesh generated using Fortran/Matlab libraries

2 Finite element method C0 linear/quadratic basis implemented, linear one routinely 
used

3 Initial value problem: RK4 or/and implicit treatment RK4: circular PIC code; implicit: 2D FEM Poisson solver

4 Multi languages: Fortran&Matlab (Lu), Python 
(Wang)

Most in Matlab, Fortran version works for GAM, python in 
progress

5 Scalability using ScaLapack/PETSC/WSMP MKL Lapack full matrix solver tested in Fortran; PETSC interface 
tested for Helmholtz equation (preliminary)



A brief introduction to TRIMEG
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• TRIMEG: TRIangular MEsh based Gyrokinetics

Physics targets Present status

1 Realistic tokamak geometry Ad-hoc/EQDSK equilibrium in Matlab; ad-hoc in Fortran

2 Wave Packet Calculation (forced oscillation & 
instability)

TAE 4th order eigenvalue equation solved (to do: comparison 
with LIGKA); ITG fluid equation solved

3 Mode structure symmetry breaking & momentum 
transport

ITG mode structure tilting observed (to do: flux calculation 
along EGAM momentum transport derivation)

4 Multiple species (energetic particle physics) EP effects in ZF residual (trends observed in Matlab PIC)

5 More challenging (but important): nonlinear 
physics, GeFi

To do: collaboration with Philipp on AUG cases; collaboration 
of Gefi (Yu Lin, F. Zonca); ORB5 simulation

Acknowledge: J. Chen (FEM, mesh); T. Hayward-Schneider 
(particle positioning), Ph. Lauber, X. Wang, A. Bottino, W.X. 
Wang, G. Meng (RBQ), R. Kleiber, B.D.Scott, G. Vlad, F. 
Zonca for instructive feedback
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ASDEX Upgrade upper snow flake divertor (data from O. Pan, IPP; Lunt et al, 
Nuclear Materials and Energy 12 (2017): 1037)

DTT (data from G. Vlad , 
M. Falessi, ENEA)
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CFETR (data from Z. Li, Peking University)



Particle loading for Maxwellian and anisotropic species

33

• Maxwellian species • Anisotropic species
0.5 million markers

Different loading scheme worthwhile trying (inspired by Alberto)



Multiple species simulation: preliminary results
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• Expected picture: EGAM excitation with thermal ions & EPs

• EP: shifted Maxwellian

• Instability observed (preliminary)
To be compared with [Zarzaso NF’14, Biancalina NF’14]



Petsc solver: test for 2D wave propagation
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• Solver tested for 2D wave packet 
propagation; finite difference

• Sparse matrix used, KSP solver

• Total DOF: 800*768; 2000 steps 
finished in <30 mins (serial 
version)

• Coupling to TRIMEG: in progress

• Scalability: as reference, an 
available physics study case is 
Alctor C-Mod ITG/TEM 
simulation using GTS [Lu NF 55, 
093012 (2015)]
• Radial domain: [0.2,0.8], radial grid 

#: 70-110; 40 markers/cell; 
400~600 𝐿𝑇/𝑣𝑡𝑖; typical core hours: 
~0.1 million

http://iopscience.iop.org/article/10.1088/0029-5515/55/9/093012/meta


Dirichlet, Neumann or mixed boundary condition
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• Linear equation: 𝐿 𝑥 𝑦(𝑥) = 𝑏(𝑥)

• 𝑦 𝑥 = σ𝑖 𝑦𝑖𝑁𝑖 𝑥 , 𝑦𝑖 =
𝑌𝐼

𝑌𝐸
, 𝑌𝐼 & 𝑌𝐸 : values on Internal & External vertices

• For 𝑀𝑖𝑗𝑦𝑖 = 𝑏𝑖,  (1)   where     𝑀𝑖𝑗 =
𝑀𝐼,𝐼,𝑀𝐼,𝐸

𝑀𝐸,𝐼,𝑀𝐸,𝐸

• Boundary condition described by (𝑀𝐸,𝐼 , 𝑀𝐸,𝐸) 𝑌𝐼

𝑌𝐸
= 𝑏𝑖

𝐸 , (2a)

i.e., 𝑌𝐸 = 𝑀𝐸,𝐸 −1𝑀𝐸,𝐼𝑌𝐼 (2b)

• Then (1) → 𝑀𝐼,𝐼 𝑌𝐼+ 𝑀𝐼,𝐸 𝑀𝐸,𝐸 −1𝑀𝐸,𝐼𝑌𝐼 = 𝑏𝑖
𝐼 (3)


