Gyrokinetic simulation using unstructured mesh (Fortran version)

Zhixin Lu T. Hayward-Schneider, A. Bottino, Ph. Lauber Acknowledge: J. Bao, M. Hoelzl, X. Wang, F. Zonca, ORB5 group, EUTERPE group , J. Chen MET meeting July 3rd , 2019

Outline

- Motivation
- Gyrokinetic simulation using unstructured meshes
- Simulation using realistic equilibrium & simplified n, T profiles
- Kinetic electron model
- Outlook

TRIMEG: TRIangular Mesh based Gyrokinetics as a testbed

Mesh

5

5.5

6

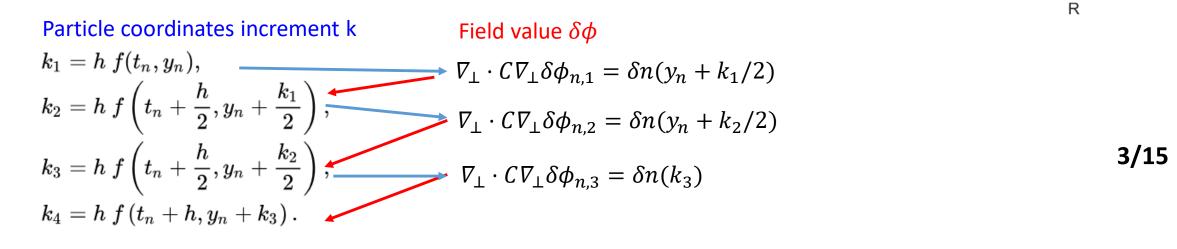
0.5

-0.5

4.5

Ν

- TRIMEG: a particle code, written from scratch as a testbed, inspired by other codes
- Hybrid coordinates: equation of motion in (R, Z, ϕ) [Chang, POP'04]; grids along flux surface except refinement grids
- Intermediate structured grid (r_i, θ_j) or (R_i, Z_j) for projection of marker weight to field quantities δn , δj
- Particle motion: Runge-Kutta 4th order, coupled to Poisson solver

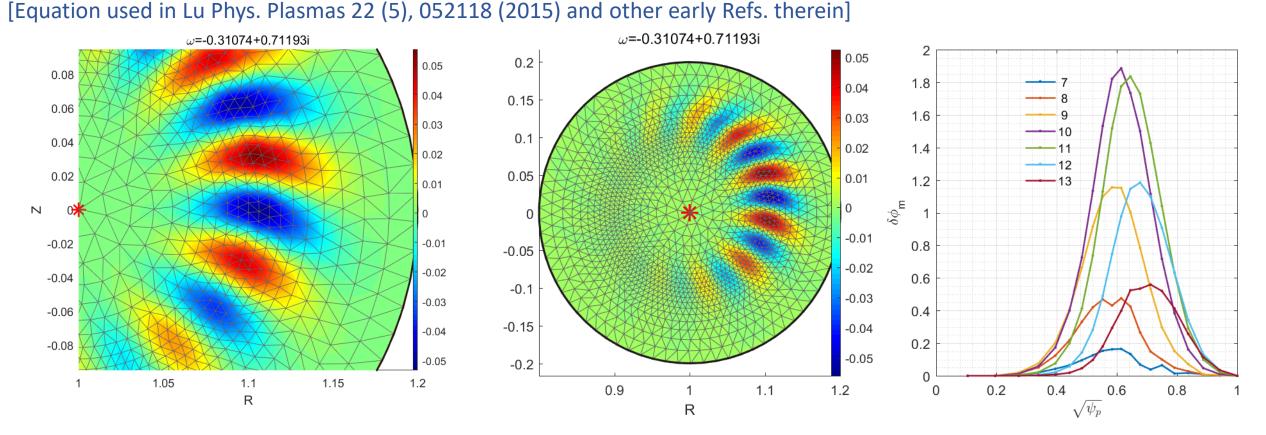


Non uniform mesh for eigenvalue problem

• Ion temperature gradient (ITG) mode

•
$$\left\{ \frac{R^2}{\Omega^2} \partial_{\parallel}^2 + \frac{\tau^{-1} \Omega + \Omega_{*i}}{\Omega - \Omega_{*pi}} - \rho_{Ti}^2 \nabla_{\perp}^2 + \frac{i \rho_{Ti} e_{Z} \cdot \nabla}{\Omega} \right\} \delta \phi = 0$$

Denser grids adopted in maximum mode amplitude region

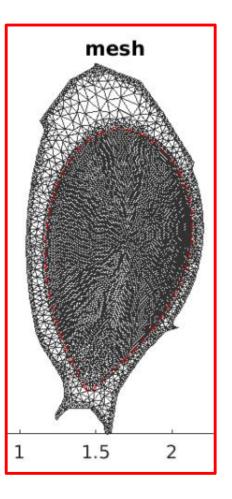


4/15

Extension to Fortran version

- Matlab version is for small scale cases
 - Field degree of freedom ~1e4, i.e., radial grid # <50; particle # < 5 millions; serial

- Fortran version for large scale cases; aiming for whole device simulation
 - Field degree of freedom > 1e5, i.e., radial grid # > 100; particle # ~ 16 millions; MPI
 Comparable to DIII-D benchmark case [S. Taimourzadeh et al, Nuclear Fusion, 59 (6), 066006 (2019)]

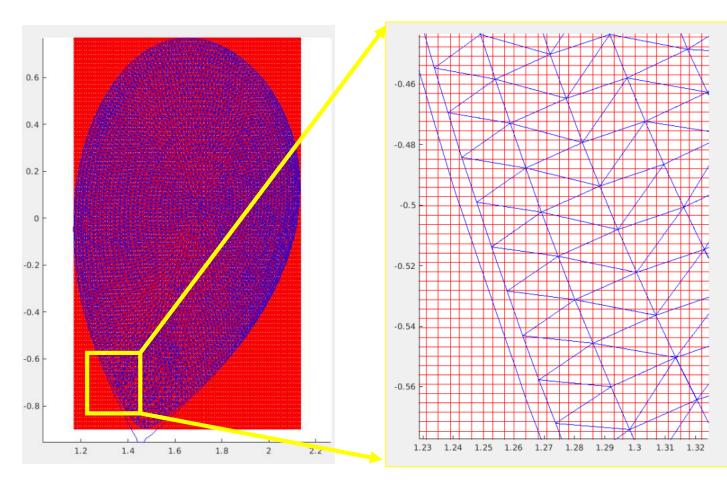


Particle positioning (deposition) in unstructured meshes

• Goal: computation cost $\propto \alpha N_p$ for N_g particles,

instead of $N_g N_p$ or $N_p \sqrt{N_g}$, α : constant

- N_g : grid #, N_p : particle #
- Global positioning scheme (GPS, brute force scheme), $cost \propto N_g N_p$
 - For a given particle, check every triangle whether this particle is in this triangle
- Local positioning scheme (LPS), cost $\propto \alpha N_p$
 - Construct boxes and build the box-triangle mapping
 - For a given particle, first find the box, then find the triangle, where the particle is inside of.



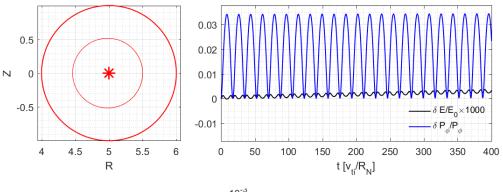
Physics model (Particle code)

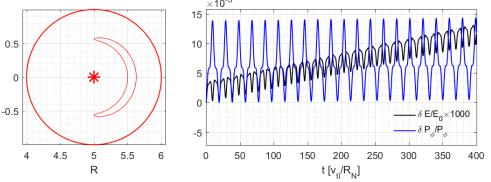
- Gyrokinetic equation (delta f method $\delta f = f f_0$) $\partial_t \delta f + \dot{x} \cdot \nabla \delta f + \dot{v}_{\parallel} \partial_{v_{\parallel}} \delta f = \delta \dot{x} \cdot \nabla f_0 + \delta \dot{v}_{\parallel} \partial_{v_{\parallel}} f_0$
- Particle equations of motions
 - Gyrokinetic equation with phase space conservation with $D \equiv 1 + v_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b} / B$ (XGC)

$$\dot{\boldsymbol{x}} = \frac{1}{D} \left[\boldsymbol{v}_{\parallel} \boldsymbol{b} + \frac{\boldsymbol{v}_{\parallel}^2}{\omega_c} \, \nabla B \times \boldsymbol{b} + \boldsymbol{B} \times \frac{\mu \nabla B - E}{\omega_c B^2} \right]$$
$$\dot{\boldsymbol{v}}_{\parallel} = -(\boldsymbol{B} + \boldsymbol{v}_{\parallel} \nabla B \times \boldsymbol{b}) \cdot (\mu \nabla B - E)$$

- Lowest order solution (in present TRIMEG version) $\dot{\boldsymbol{x}} = \boldsymbol{v}_{\parallel} \boldsymbol{b} - \frac{\hat{\boldsymbol{z}}(\boldsymbol{v}_{\perp}^{2} + 2\boldsymbol{v}_{\parallel}^{2})}{2\omega_{c}} \frac{\partial B}{\partial R} - \frac{\boldsymbol{B} \times \boldsymbol{E}}{\omega_{c} B^{2}}$ $\dot{\boldsymbol{v}}_{\parallel} = -\boldsymbol{B} \cdot (\mu \nabla B - \boldsymbol{E})$
- Poisson equations in the long wavelength limit
 - $-\nabla_{\perp} \frac{n_0}{\omega_c B} \cdot \nabla_{\perp} \delta \phi = \delta n_i \delta n_e$

• Adiabatic electron:
$$-\nabla_{\perp} \frac{n_0}{\omega_c B} \cdot \nabla_{\perp} \delta \phi + \frac{e \delta \phi}{T_e} = \delta n_i$$





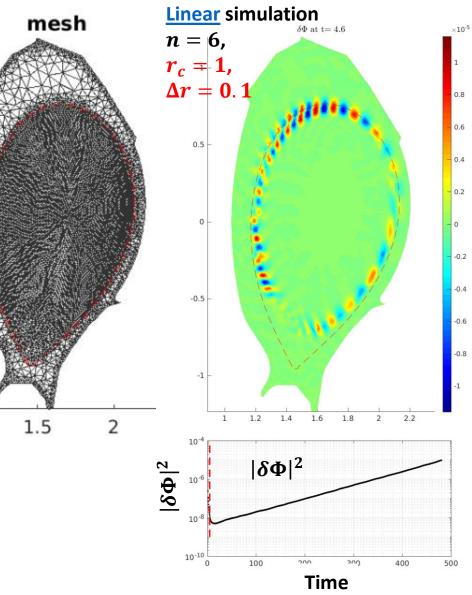
Error of particle integrator (passing & trapped particles)

Ν

ASDEX Upgrade simulation in the whole plasma volume

1

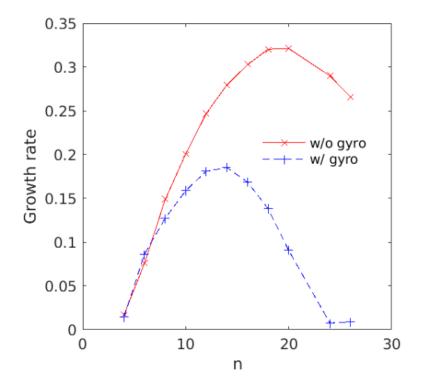
- TRIMEG development for large scale simulation
 - Equilibrium: constructed in the whole device using EQDSK
 - Particle equation (dominant terms) implemented
 - Field solver implemented using PETSc library
 - Mixed PIC-PIF scheme: Particle-in-cell in (*R*, *Z*); Particle-in-Fourier in toroidal direction
 - Typical nonlinear runs (single n): 640 cores, 25.6 millions markers, 4 hours
- Application to AUG plasma
 - Equilibrium of ENR projects (NLED/NAT) case, Ph. Lauber (AUG Shot 034924)
 - Gradient profile: $\frac{dln\{n_i,T_i\}}{dr} = \frac{\kappa_{n_i,T_i}}{R_0} \exp\{-\left(\frac{r-r_c}{\Delta r}\right)^{\alpha}\}$
 - Benchmark with ORB5 in core, fully consistent profiles, comprehensive models (kinetic electrons, phase space conservation): in progress



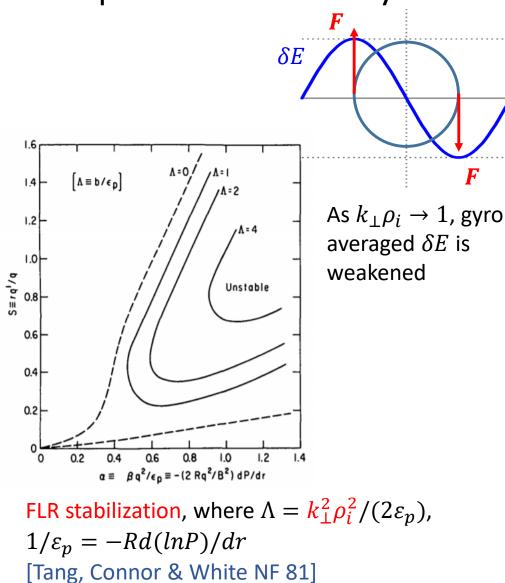
8/15 • Ion Temperature Gradient (ITG) mode simulation

Linear results: stabilization due to FLR

- Essence: gyroaverage weakens the effective field perturbation felt by particles $\delta E \rightarrow \langle \delta E \rangle_{gyro} \sim J_0(k_\perp \rho_i) \delta E$
- $k_{\perp}\rho_i \sim nq\rho_i/r$ indicates strength of FLR



Results from TRIMEG using 4 point gyro average



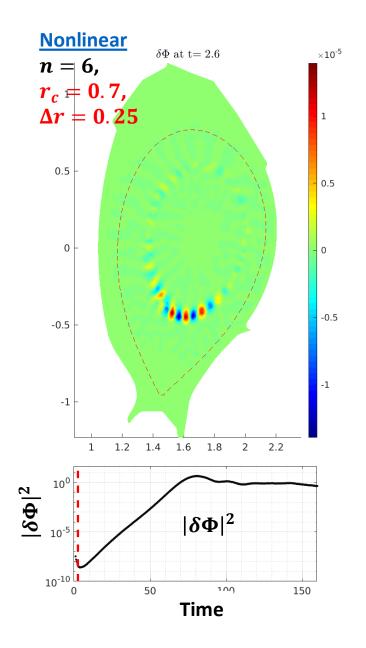
9/15

Nonlinear results

• Saturation due to perturbed trajectory related nonlinear term $\partial_t \delta f + \boldsymbol{v} \cdot \nabla \delta f + \dot{v}_{\parallel} \partial_{v_{\parallel}} \delta f = \delta \boldsymbol{v} \cdot \nabla f_0 + \delta \dot{v}_{\parallel} \partial_{v_{\parallel}} f_0$

 $\boldsymbol{v} \cdot \nabla \delta f = \boldsymbol{v}_{\mathbf{0}} \cdot \nabla \delta f + \delta \boldsymbol{v}_{\boldsymbol{E} \times \boldsymbol{B}} \cdot \nabla \delta f$

• Zonal flow and equilibrium E_r suppresses turbulence and needs to be added for interpreting experiments



Kinetic electron (electrostatic) model (preliminary)

• Main issue: fast electron motion along **B**

• ...

- $\partial_t \delta f + \boldsymbol{v}_0 \cdot \nabla \delta f + \dot{\boldsymbol{v}}_{\parallel,0} \partial_{\boldsymbol{v}_\parallel} \delta f = \delta \boldsymbol{v} \cdot \nabla f_0 + \delta \dot{\boldsymbol{v}}_\parallel \partial_{\boldsymbol{v}_\parallel} f_0$
- $v_0 \cdot \nabla \delta f \sim v_{\parallel,0} \partial_{\parallel} \delta f$ balances $\delta \dot{v}_{\parallel} \partial_{v_{\parallel}} f_0 = \frac{e}{T} v_{\parallel} f_0 \partial_{\parallel} \delta \phi$ in $m_e = 0$, uniform plasma limit; thus fast electron motion along **B** should be simulated accurately
- Solution I: decrease time step to resolve the $\omega-H$ mode [Lee 1987]
- Solution II: fluid electron model [Chen, Lin, GTC; Mishchenko et al]
- Solution III: separation of adiabatic electrons [Lewandovski, Lee et al GTC]
- Solution IV: separation of passing/trapped electrons [Bottino et al, ORB5]

- Another question: any lessen from pull-back scheme?
 - For electrostatic modes, $\delta A^s_{\parallel} + \delta A^h_{\parallel} = \delta A_{\parallel} = 0$.

→ Should $\partial_t \delta A^s_{\parallel} + \partial_{\parallel} \delta \phi = 0$ be chosen (but then $\delta A^s_{\parallel} = -\delta A^h_{\parallel}$)?

Kinetic electron (electrostatic) model (preliminary)

• Iterative scheme in this work

• Field equation:
$$-\nabla_{\perp} \frac{n_0}{\omega_c B} \cdot \nabla_{\perp} \delta \phi + \frac{e \delta \phi}{T_e} = \delta n_i - \delta n_e^{NA}$$
, $\delta n_e^{NA} = \delta n_e - \frac{e \delta \phi}{T_e}$

• For $\delta n_e^{NA} \ll \frac{e}{T_e} \delta \phi$, solve $\delta \phi = \delta \phi^{(0)} + \delta \phi^{(1)} + \delta \phi^{(2)} + \cdots$ order by order

$$-\nabla_{\perp} \frac{n_0}{\omega_c B} \cdot \nabla_{\perp} \delta \phi^{(0)} + \frac{e}{T_e} \delta \phi^{(0)} = \delta n_i \quad ,$$

$$-\nabla_{\perp} \frac{n_0}{\omega_c B} \cdot \nabla_{\perp} \delta \phi^{(1)} + \frac{e}{T_e} \delta \phi^{(1)} = \delta n_e^{NA,(1)} \quad ,$$

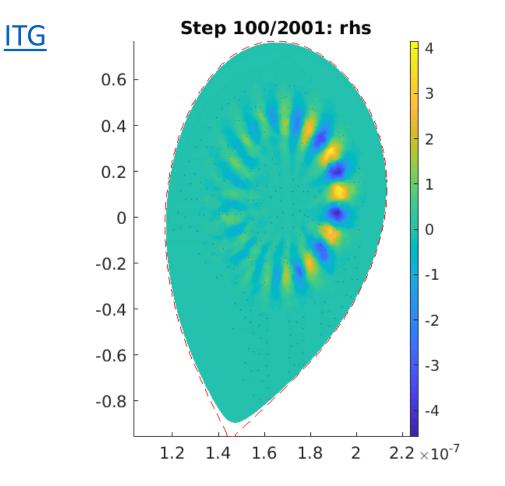
. . .

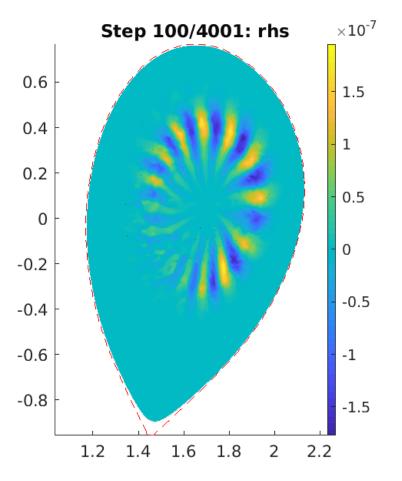
where $\delta n_e^{NA,(1)} = \delta n_e - e \delta \phi^{(0)} / T_e$, δn_e is calculated using δf_e .

- Main concern: applicability of this scheme? $n_e^{NA} \ll \frac{e}{T_e} \delta \phi$ can break down!
- Better scheme?

Simulation results (w/ kinetic e^-)

• AUG equilibrium, analytical T, n gradient profiles





More tests are needed

TEM

Outlook

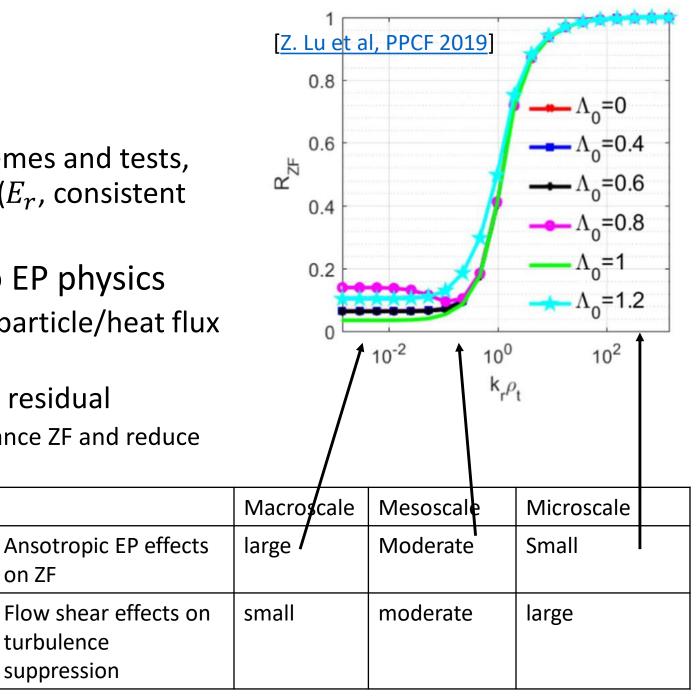
- Code capabilities
 - Electrostatic, kinetic electrons: schemes and tests, more realistic experiments profiles (E_r , consistent profiles)
- Possible physics studies related to EP physics
 - ITG/TEM induced EP transport and particle/heat flux on the wall
 - Anisotropic EP effects on zonal flow residual
 - Is it possible / how to use ICRF to enhance ZF and reduce turbulence?
 - And more?

More
analyses
needed

on ZF

turbulence

suppression



Thank you

• Comments are welcome